Crystal structure reveals light regulation in cyanobacteria

Jun 07, 2013
Crystal structure reveals light regulation in cyanobacteria
SEM of Synechocystis cyanobacteria, which helped researchers study the crystal structure of the FRP protein. Credit: Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Generic License by BASF - The Chemical Company

Light is crucial for photosynthetic organisms, but one can have too much of a good thing. Excess light can harm organisms when the amount of energy absorbed exceeds the rate of carbon fixation.

To protect themselves from excess light, cyanobacteria rely on light- harvesting antennae called phycobilisomes that can sense light conditions in order to efficiently collect this energy. A protein known as OCP helps regulate the phycobilisomes, and is in turn regulated by a protein known as FRP.

In an article published ahead online May 28, 2013 in Proceedings of the National Academy of Sciences, a team led by DOE Joint Genome Institute researchers focused on the crystal structure of the FRP protein in a species of Synechocystis bacteria to learn more about how cyanobacteria protect themselves from excess light.

They were able to look at the crystal structure using beamlines at Berkeley Lab's Advanced Light Source. They found that FRP has two forms: it forms a dimer in the active state and otherwise appears as a tetramer. The researchers also found a region of highly conserved residues on the structure of FRP that are essential to the protein's activity.

Their findings have led the team to propose a model of how the FRP and OCP proteins interact with phycobilisomes under both high light and low light conditions in order to ensure the cyanobacteria can safely and efficiently harness light to conduct photosynthesis.

Explore further: Sugar mimics guide stem cells toward neural fate

More information: www.pnas.org/content/early/201… /1303673110.abstract

add to favorites email to friend print save as pdf

Related Stories

Engineered microbes grow in the dark

May 20, 2013

Scientists at the University of California, Davis have engineered a strain of photosynthetic cyanobacteria to grow without the need for light. They report their findings today at the 113th General Meeting of the American ...

Putting light-harvesters on the spot

Oct 19, 2011

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schunemann has de ...

'Safety valve' protects photosynthesis from too much light

Nov 25, 2009

Photosynthetic organisms need to cope with a wide range of light intensities, which can change over timescales of seconds to minutes. Too much light can damage the photosynthetic machinery and cause cell death. Scientists ...

Getting to know bacteria with 'multiple personalities'

Jul 07, 2011

(PhysOrg.com) -- Cyanobacteria, or blue-green algae, have been the subject of decades of debate over exactly how they should be classified. While they reproduce and share DNA with their bacterial cousins, ...

Recommended for you

Molecular gate that could keep cancer cells locked up

15 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

18 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0