Have you had your cereal today?

June 20, 2013

Cereals are grasses that produce grains, the bulk of our food supply. Carnegie's Plant Biology Department is releasing genome-wide metabolic complements of several cereals including rice, barley, sorghum, and millet. Along with corn, whose metabolic complement was released previously, these species are responsible for producing over 1.5 billion tons of grains annually world-wide. Understanding how these important species harness sunlight to grow and produce seeds will help researchers improve crop yields, combat world hunger, and produce biofuel that could lower fuel costs and perhaps fight climate change.

The databases are designed to help researchers gain a detailed, genome-scale view of the chemical reactions that define a plant's metabolic life. This includes activities such as converting carbon dioxide and sunlight into chemical energy, transporting nutrients from the soil, and responding to the environment. All of the databases and data can be searched, browsed, or downloaded from the Plant Metabolic Network project website.

"We are trying to understand how the metabolic systems of plants are organized, function and evolve so that we and others can ultimately engineer a variety of different plants," says program leader Seung Yon Rhee. "This degree of across-the-board knowledge about the enzymes, , and that control a plant's metabolism is necessary for meeting the ever-expanding demand for production of food, biofuel and phyto-pharmaceuticals."

Rhee's group consists of plant biologists, scientific curators, post-doctoral scholars, and student interns. The group employs a number of approaches to generate information, integrating techniques and concepts from a wide range of fields including genomics, computer science, statistics, evolution, , and biochemistry.

In addition to the world's most important —rice, sorghum, barley, and millet—Rhee's group is also releasing the metabolic complements of switchgrass, which is an important potential source, and Brachypodium, which serves as an experimental model used by scientists to better understand all grasses. Additionally, Rhee's group is releasing substantially expanded metabolic databases for 10 species that were already part of the site. These include corn, soybean, Arabidopsis, wine grape, cassava, poplar, moss, Selaginella, papaya, and Chlamydomonas.

Together with an all-plant metabolic pathway database called PlantCyc, the Plant Metabolic Network site contains the world's largest collection of publically available metabolic information for plants.

Explore further: New databases harvest a rich bounty of information on crop plant metabolism

Related Stories

New Web resource to improve crop engineering

June 19, 2008

Stanford, CA. The Carnegie Institution's Department of Plant Biology announced the launch of a new web-based resource that promises to help researchers around the world meet increasing demands for food production, animal ...

Plants tell time

June 4, 2013

Scientist Peter Freeman is managing a project that is probing the clock and metabolism of plants, called TiMet. Partners to the project include star biologists in the Germany, Spain, Switzerland and the UK, all working to ...

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(Phys.org)—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.