How cells get a skeleton

Jun 10, 2013

The mechanism responsible for generating part of the skeletal support for the membrane in animal cells is not yet clearly understood. Now, Jean-François Joanny from the Physico Chemistry Curie Unit at the Curie Institute in Paris and colleagues have found that a well-defined layer beneath the cell outer membrane forms beyond a certain critical level of stress generated by motor proteins within the cellular system. These findings, which offer a new understanding of the formation of this so-called cortical layer, have just been published in the European Physical Journal E.

Active gels are ideal for modelling the similar material found in living cells' structure, made of a dynamic, filamentous scaffold. They are composed of components that take up energy and do directed work. Indeed, is fed into the cells' constituents and is transformed into mechanical work through the assembly of its internal filaments, made of a polymer called actin, and a protein that functions as a , called myosin. Both provide the active gel-like substance found in cells with a spontaneous tendency to contract. As a result, the cells can either maintain or change their shape, or even adhere, spread, divide and crawl.

In this study, the authors have created hydrodynamic models of active gels to model the cell cortex, whereby the active gel is polymerising at the surface and depolymerising throughout the gel as a whole. They first derived the equations providing a coarse-grained description of cortical dynamics, then calculated the configuration in which their model was in a steady state.

They found that for sufficiently high levels of contractile stress it consisted of a dense layer near the membrane, which abruptly cut off beyond a certain thickness. The key advance in their model is the inclusion of gel disassembly throughout the system, and the contractility due to molecular motors.

Explore further: Top Japan lab dismisses ground-breaking stem cell study

More information: J.-F. Joanny et al. (2013), The actin cortex as an active wetting layer, European Physical Journal E. DOI 10.1140/epje/i2013-13052-9

add to favorites email to friend print save as pdf

Related Stories

Scientists build 'mechanically active' DNA material

Oct 23, 2012

Artificial muscles and self-propelled goo may be the stuff of Hollywood fiction, but for UC Santa Barbara scientists Omar Saleh and Deborah Fygenson, the reality of it is not that far away. By blending their ...

Make or break for cellular tissues

May 16, 2012

In a study about to be published in the European Physical Journal E, French physicists from the Curie Institute in Paris have demonstrated that the behaviour of a thin layer of cells in contact with an unfavourable substr ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.