Blockade in cellular waste disposal: Scientists show how protein aggregates disrupt the molecular balance of the cell

Jun 21, 2013
Blockade in cellular waste disposal: Scientists show how protein aggregates disrupt the molecular balance of the cell
PolyQ aggregates (red) inhibit degradation of misfolded protein (green) and accumulate cytosolic inclusions. The nucleus is stained in blue. Credit: Sae-Hun Park, Copyright: MPI of Biochemistry.

Proteins can only perform their complex functions in the cell when they assume a specific three-dimensional structure for each respective task. Because misfolded proteins are often toxic, they are immediately refolded or degraded. Scientists of the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich have now shown in the yeast model that specific protein aggregates block an important degradation pathway for defective proteins – and thus disrupt the fragile molecular balance of the cell. The results of the study have now been published in the journal Cell.

in cells can cause severe diseases such as Huntington's disease. The massive movement disorders that appear with this disease are likely caused by aggregates of specific proteins, the polyQ proteins. Scientists of the research department Cellular Biochemistry headed by F.-Ulrich Hartl have now shown how these protein aggregates, commonly known as plaques, seriously disrupt cellular homeostasis.

Cells in the balance

The entire set of all is referred to as the proteome, whose composition is determined by a delicate balance of and degradation. This process is regulated at several levels. Key helpers here are the which aid the proteins in proper folding or lead them to degradation if the misfolding is irreparable. Among other things, this procedure serves to prevent the formation of protein plaques. Hartl's team has now succeeded in demonstrating that polyQ aggregates in yeast primarily have an effect on the chaperone Sis1p.

This molecule functions as a cellular shuttle: It transports misfolded proteins from the cytosol into the , where they are degraded. The harmful polyQ plaques block this process by intercepting Sis1p. "As a result, misfolded proteins accumulate in the cell, which may contribute to the toxicity of polyQ aggregates," said Sae-Hun Park, scientist at the MPI of Biochemistry and first author of the study.

Similar processes may occur in polyQ diseases in humans. Also in mammalian cells, misfolded proteins are transported from the into the nucleus. Here the chaperone DnajB1 plays a role similar to Sis1p in the yeast model. Contrary to prevailing opinion, Hartl's team even assumes that this degradation pathway is the most important means of clearance of misfolded proteins from the cell interior. Further studies shall now show whether and to what extent these fundamental processes play a role in the pathogenic protein plaques.

Explore further: Culprit implicated in neurodegenerative diseases also critical for normal cells

More information: Park, S. PolyQ Proteins Interfere with Nuclear Degradation of Cytosolic Proteins by Sequestering the Sis1p Chaperone, Cell, June 20, 2013. DOI: 10.1016/j.cell.2013.06.003

Related Stories

Transmission routes of spreading protein particles

Mar 27, 2013

In diseases like Alzheimer's and Parkinson's endogenous proteins accumulate in the brain, eventually leading to the death of nerve cells. These deposits, which consist of abnormally formed proteins, are supposed to migrate ...

Scientists gain new insights into protein disposal

May 28, 2013

Cells have a sophisticated system to control and dispose of defective, superfluous proteins and thus to prevent damage to the body. Dr. Katrin Bagola and Professor Thomas Sommer of the Max Delbrück Center for Molecular Medicine ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

3 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

4 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

23 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

Apr 16, 2014

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 0

More news stories

Fear of the cuckoo mafia

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...