Astronomers discover pulsations in crystalized, dying star

Jun 20, 2013
The 2.1-meter (82-inch) Otto Struve Telescope at the University of Texas McDonald Observatory. Photo by Marty Harris/McDonald Observatory

(Phys.org) —Astronomers from The University of Texas at Austin and colleagues have used the 2.1-meter Otto Struve Telescope at the university's McDonald Observatory to discover pulsations from the crystalized remnant of a burnt-out star. The finding will allow astronomers to see below the star's atmosphere and into its interior, much like earthquakes allow geologists to study compositions below Earth's surface. The findings appear in the current issue of The Astrophysical Journal Letters.

The Texas astronomers made their discovery in collaboration with astronomers from Brazil's Universidade Federal do Rio Grande do Sul, the University of Oklahoma, and the Smithsonian Astrophysical Observatory.

The star, GD 518, is roughly 170 light years from Earth in the constellation Draco, but far too faint to be seen without a telescope. It is a white dwarf, a star at the end of its life cycle that is essentially just a burnt-out core, the ashy byproduct of previous epochs of nuclear fusion.

The star is unique in that much of it is likely suspended in a state more akin to a solid than a liquid or gas. The interiors of dying can become crystalized similar to the way in which frigid water freezes into ice, like the slow formation of glaciers in cooling .

"GD 518 is special because it is a very massive white dwarf: It has about 1.2 times the , packed into a volume smaller than Earth," said lead author J.J. Hermes, a graduate student at The University of Texas at Austin. "Few are endowed with so much mass, and this is by far the most massive white dwarf discovered to pulsate."

The star also likely has an interior composed of heavier elements than those found in typical burnt-out stars.

Our Sun will only get hot enough in its center for to burn hydrogen into helium, and in turn the helium to carbon and oxygen. The Sun will end its life in more than five billion years as a white dwarf with its central regions composed mostly of the nuclei of carbon and oxygen atoms.

But unlike the Sun, the star that died to become the white dwarf GD 518 was so massive —probably more than seven times the Sun's mass—that it burned elements heavier than carbon and oxygen, and is now likely a white dwarf composed of oxygen and neon nuclei.

The discovery of —periodic brightness changes on the surface of a star that, in this case, keep a regular tune every 400-600 seconds—will allow astronomers an unprecedented opportunity to understand what makes up this highly evolved star's interior.

Team member Barbara Castanheira is a postdoctoral researcher with McDonald Observatory. "Like a child at a museum, astronomers are only allowed to look, not touch, when they perform experiments," Castanheira said. "This means we usually can only understand the surface of a star. Pulsations, like the sound of a bell, tell us more of the story, since they can unravel secrets about the much deeper interior of a star."

White dwarf stars no longer fuse elements in their interior to generate energy; they simply cool, like coal embers removed from a fire. But at a certain point the atomic nuclei in the star's interior get cool enough to begin to settle into a lattice structure and crystalize, just like water freezing into ice. This happens sooner in the interiors of more massive white dwarfs, and in the case of GD 518, it has likely started before the star had the right conditions to excite pulsations. The transition to a solid-like star should also affect the way the white dwarf vibrates from these pulsations.

Astronomers now face the difficult task of matching the pulsation periods observed in the star with those predicted by different models of the structure of its interior. The discovery observations show promise in this direction, Hermes said.

"We see evidence that the strength of pulsations in this star are very inconsistent; some nights the star is as still as a whisper," he said. "This could be because the white dwarf is highly crystalized, and the pulsations are only allowed to propagate in a tiny bit of the outermost parts of the star. They thus have little inertia, and are more susceptible to changes than the pulsations in a typical pulsating white dwarf."

University of Texas astronomers will continue watching GD 518 from McDonald Observatory, listening closely for any new notes that can unravel the song being sung by light from this ultramassive dying star.

Explore further: Cosmic CSI team: Whole Earth Telescope focuses on burned-out stars

More information: dx.doi.org/10.1088/2041-8205/771/1/L2

Related Stories

Feuding helium dwarfs exposed by eclipse

May 24, 2011

Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium.

Astronomers discover new kind of supernova

Mar 26, 2013

(Phys.org) —Supernovae were always thought to occur in two main varieties. But a team of astronomers including Carnegie's Wendy Freedman, Mark Phillips and Eric Persson is reporting the discovery of a new ...

Binary white dwarf stars

May 04, 2011

(PhysOrg.com) -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

Kepler provides insights into unusual dwarf star

Jun 03, 2013

(Phys.org) —Astronomer John Gizis of the University of Delaware, working with data obtained by the Kepler mission, is studying a highly unusual dwarf star and its powerful flares that may hold clues to the ...

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
2.3 / 5 (3) Jun 21, 2013
"like the slow formation of glaciers in cooling ocean water."

I am reasonably certain that glaciers do no form in oceans. Ice sheets, yes. Glaciers, no.

More news stories

Another fireball explodes over Russia

Why does Russia seem to get so many bright meteors? Well at 6.6 million square miles it's by far the largest country in the world plus, with dashboard-mounted cameras being so commonplace (partly to help ...

ISEE-3 comes to visit Earth

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...

NASA's MMS observatories stacked for testing

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...