Spinning up antibacterial silver on glass

Jun 27, 2013

The antibacterial effects of silver are well established. Now, researchers at Yonsei University in Seoul, Republic of Korea, have developed a technique to coat glass with a layer of silver ions that can prevent growth of pathogenic bacteria including Escherichia coli, Salmonella typhimurium and Campylobacter jejuni. The technology could be used to protect medical equipment and be particularly useful for applications in disaster recovery and the military environment.

Materials scientist Se-Young Choi and colleagues Cheol-Young Kim, Yu-Ri Choi and Kwang-Mahn Kim, explain in the International Journal of Nanotechnology how has been known to be an antibacterial substance since the middle of the nineteenth century. It has found applications in bactericidal formulations for medical instruments and even odor-destroying socks

A big advantage of the use of this substance rather than organic agents against bacteria is that bacteria are yet to evolve resistance to it whereas that lead to proteins that can assimilate and degrade frequently arise. As such, silver solutions have been used widely as disinfectants, in water purification in and in dentistry. Scientists have demonstrated that can latch on to sulfur-containing thiol groups in bacterial biomolecules disrupting their activity and thereby killing the microbes. Finding a way to add a permanent silver ion coating to glass would expand the antibacterial repertoire much further allowing a wider range of medical instruments, drinking vessels and other equipment to be kept sanitary regardless of working conditions.

The Seoul team has now developed a way to "spin" coat glass with silver present in a so-called sol-gel, a type of gelatinous solution within which are dispersed dissolved silver ions present as their nitrate salt. Spinning takes place at 200 Celsius with a rotation rate of 2000 revolutions per minute. They used to demonstrate how a substantial coating could be formed on glass and then successfully tested its activity against various food-poisoning bacteria. The resulting coated glass is more than 90 percent as transparent as uncoated glass bending strength tests show it to be slightly toughened by the presence of the silver coating.

"There are lots of bacteria that can cause serious food poisoning in the military equipment and environments," Choi explains. "So, the antimicrobial activity of the silver ion containing film showed its potential for use as a coating for medical devices and military equipment." The team suggests that the same approach could be used to spin coat other smooth materials.

Explore further: New cancer-hunting 'nano-robots' to seek and destroy tumours

More information: DOI: 10.1504/IJNT.2013.054206

Related Stories

A nano end for Christmas tree needles

Jan 02, 2013

As Twelfth Night approaches and the Christmas decorations start to look increasingly congruous as the last crumbs of cake are swept away and the remnants of the turkey have finally been consumed, there is the perennial question ...

Antibacterial silver nanoparticles are a blast

May 24, 2010

Writing in the International Journal of Nanoparticles, Rani Pattabi and colleagues at Mangalore University, explain how blasting silver nitrate solution with an electron beam can generate nanoparticles that are more effect ...

Killer paper for next-generation food packaging

Jan 19, 2011

Scientists are reporting development and successful lab tests of "killer paper," a material intended for use as a new food packaging material that helps preserve foods by fighting the bacteria that cause spoilage. The paper, ...

Greener methods for making popular nanoparticle

Apr 24, 2013

Already renowned for its beneficial effects on human health, green tea could have a new role—along with other natural plant-based substances—in a healthier, more sustainable production of the most widely used family of ...

Antibacterial stainless steel created

Jul 19, 2011

Materials scientists at the University of Birmingham have devised a way of making stainless steel surfaces resistant to bacteria in a project funded by the Engineering and Physical Sciences Research Council which culminated ...

Recommended for you

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

User comments : 0