Heat distribution control with new zone-control induction heating system

May 28, 2013
Fig. 1. System configuration of the developed zone-control induction heating system.

Heat processing of next-generation wide-band gap semiconductors is expected to require temperatures higher than 1500 K and rapid heat-up rates of greater than 100 K/s. Of the various methods available for high temperature treatment of semiconductors high-frequency induction heating is one of the most promising candidates that satisfies the aforementioned requirements.

However, induction heating has a shortcoming related to temperature uniformity and/or heat distribution due to deviations in the magnetic flux density of the induction heating coils. Although many researchers have attempted to solve this problem by using multiple working coils and high-frequency power supplies, no one has succeeded over the last twenty years.

Now, Pham Ngoc Ha and Hideaki Fujita at Tokyo Tech and the Mitsui Engineering and Ship Builder Co. Ltd. have developed a new zone-control induction heating (ZCIH) system as a part of a cooperative research project.

The ZCIH system consists of six sets of working coils and inverter circuits, and is controlled with a newly developed 'current phase synchronization' technology and three-dimensional resistance matrix theory.

Fig. 2. Thermograms of the heated work piece by (a) a conventional and (b) the proposed induction heating systems.

The new ZCIH system enabled stable operation and flexible heat distribution in experiments conducted by the researchers, yielding flat temperature profiles.

This control method is applicable not only to semiconductor processing but for the development of a wide range of other materials.

Explore further: Tricorder XPRIZE: 10 teams advance in global competition to develop consumer-focused diagnostic device

More information: Pham, H. et al. Estimating Method of Heat Distribution Using 3-D Resistance Matrix for Zone-Control Induction Heating Systems, IEEE Transactions on Power Electronics, vol.27, no.7, pp.3374-3382 (2012). DOI: 10.1109/TPEL.2011.2179984

add to favorites email to friend print save as pdf

Related Stories

NIST helps heat pumps 'go with the flow' to boost output

Jan 23, 2008

Air-source heat pumps typically deliver 1 1/2 to three times more heating energy to a home than the electric energy they consume. This is possible because heat pumps move heat rather than convert it from a ...

Innovative self-cooling, thermoelectric system developed

Apr 11, 2013

Spanish researchers at the UPNA/NUP-Public University of Navarre have produced a prototype of a self-cooling thermoelectric device that achieves "free" cooling of over 30ºC in devices that give off heat. It is a piece of ...

Self-cooling observed in graphene electronics

Apr 03, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Recommended for you

Augmented reality helps in industrial troubleshooting

Aug 28, 2014

At a "smart" factory, machines reveal a number of data about themselves. Sensors measuring temperature, rotating speed or vibrations provide valuable information on the state of a machine. On this basis, ...

User comments : 0