Western Indian Ocean earthquake and tsunami hazard potential greater than previously thought

May 13, 2013
The location of the Makran subduction zone of Pakistan and Iran and locations of recorded earthquakes including the 1945 magnitude 8.1 earthquake (red dot to the north indicates the 1947 magnitude 7.3 earthquake). The profile for the thermal modelling of this study is the N-S trending black line, with distance given along the profile from the shallowest part of the subduction zone in the south (0 kilometers) to the most northern potential earthquake rupture extent (350 kilometers). Credit: University of Southampton Ocean and Earth Science

Earthquakes similar in magnitude to the 2004 Sumatra earthquake could occur in an area beneath the Arabian Sea at the Makran subduction zone, according to recent research published in Geophysical Research Letters.

The research was carried out by scientists from the University of Southampton based at the National Oceanography Centre Southampton (NOCS), and the Pacific Geoscience Centre, Natural Resources Canada.

The study suggests that the risk from undersea earthquakes and associated tsunami in this area of the Western Indian Ocean – which could threaten the coastlines of Pakistan, Iran, Oman, India and potentially further afield – has been previously underestimated. The results highlight the need for further investigation of pre-historic earthquakes and should be fed into hazard assessment and planning for the region.

Subduction zones are areas where two of the Earth's collide and one is pushed beneath the other. When an earthquake occurs here, the seabed moves horizontally and vertically as the pressure is released, displacing large volumes of water that can result in a tsunami.

The Makran has shown little since a magnitude 8.1 earthquake in 1945 and magnitude 7.3 in 1947. Because of its relatively low seismicity and limited recorded historic earthquakes it has often been considered incapable of generating .

faults at subduction zones are expected to be prone to rupture generating earthquakes at temperatures of between 150 and 450 °C. The scientists used this relationship to map out the area of the potential fault beneath the Makran by calculating the temperatures where the plates meet. Larger fault rupture zones result in larger magnitude earthquakes.

This shows the primary tectonic plates and plate boundaries in the Arabian Sea region and the geographic context. Credit: University of Southampton Ocean and Earth Science

"Thermal modelling suggests that the potential zone extends a long way northward, to a width of up to 350 kilometres which is unusually wide relative to most other subduction zones," says Gemma Smith, lead author and PhD student at University of Southampton School of Ocean and Earth Science, which is based at NOCS.

The team also found that the thickness of the sediment on the subducting plate could be a contributing factor to the magnitude of an earthquake and tsunami there.

"If the sediments between the plates are too weak then they might not be strong enough to allow the strain between the two plates to build up," says Smith. "But here we see much thicker sediments than usual, which means the deeper sediments will be more compressed and warmer. The heat and pressure make the sediments stronger. This results in the shallowest part of the subduction zone fault being potentially capable of slipping during an earthquake.

"These combined factors mean the Makran subduction zone is potentially capable of producing major earthquakes, up to magnitude 8.7-9.2. Past assumptions may have significantly underestimated the earthquake and tsunami hazard in this region."

Explore further: Glaciers in the grand canyon of Mars?

More information: Smith, G.L., McNeill, L.C., Wang, K., He, J., and Henstock, T.J., 2013, Thermal structure and megathrust seismogenic potential of the Makran subduction zone: Geophys. Res. Lett., 40, doi:10.1002/grl.50374

Related Stories

Sumatra earthquake mysteries examined

May 11, 2012

(Phys.org) -- An earthquake in the Indian Ocean off the coast of Sumatra, Indonesia on 11th April was unusually powerful, at magnitude 8.6, for a “strike-slip” type of quake, and a new analysis of ...

Scientists pinpoint great-earthquake hot spots

Dec 05, 2012

The world's largest earthquakes occur at subduction zones - locations where a tectonic plate slips under another. But where along these extended subduction areas are great earthquakes most likely to happen? Scientists have ...

Greater tsunami threat identified

Jun 21, 2011

The shape of the seabed where the 2004 Sumatra earthquake struck may indicate that the strength of the underlying rocks added to the size of the resulting tsunami, according to new research.

GPS data reveals more on mega-thrust earthquakes

Apr 29, 2011

(PhysOrg.com) -- New GPS data of the 2010 earthquake that devastated parts of Chile and killed over 500 people is revealing new clues about large earthquakes such as the quake in Chile and the magnitude 9.0 ...

Helping to forecast earthquakes in Salt Lake Valley

Apr 17, 2013

Salt Lake Valley, home to the Salt Lake City segment of the Wasatch fault zone and the West Valley fault zone, has been the site of repeated surface-faulting earthquakes (of about magnitude 6.5 to 7). New research trenches ...

Recommended for you

NASA's HS3 looks Hurricane Edouard in the eye

3 hours ago

NASA and NOAA scientists participating in NASA's Hurricane and Severe Storms Sentinel (HS3) mission used their expert skills, combined with a bit of serendipity on Sept. 17, 2014, to guide the remotely piloted ...

Tropical Storm Rachel dwarfed by developing system 90E

8 hours ago

Tropical Storm Rachel is spinning down west of Mexico's Baja California, and another tropical low pressure area developing off the coast of southwestern Mexico dwarfs the tropical storm. NOAA's GOES-West ...

NASA ocean data shows 'climate dance' of plankton

11 hours ago

The greens and blues of the ocean color from NASA satellite data have provided new insights into how climate and ecosystem processes affect the growth cycles of phytoplankton—microscopic aquatic plants ...

Glaciers in the grand canyon of Mars?

12 hours ago

For decades, planetary geologists have speculated that glaciers might once have crept through Valles Marineris, the 2000-mile-long chasm that constitutes the Grand Canyon of Mars. Using satellite images, ...

NASA support key to glacier mapping efforts

13 hours ago

Thanks in part to support from NASA and the National Science Foundation, scientists have produced the first-ever detailed maps of bedrock beneath glaciers in Greenland and Antarctica. This new data will help ...

User comments : 0