New tool has potential for brain mapping

May 16, 2013

A new tool being developed by UT Arlington assistant professor of physics could help scientists map and track the interactions between neurons inside different areas of the brain.

The journal Optics Letters recently published a paper by Samarendra Mohanty on the development of a fiber-optic, two-photon, optogenetic stimulator and its use on in a laboratory. The tiny tool builds on Mohanty's previous discovery that near-infrared light can be used to stimulate a light-sensitive protein introduced into living cells and neurons in the brain. This new method could show how different parts of the brain react when a linked area is stimulated.

The technology would be useful in the initiative recently championed by President , Mohanty said. BRAIN stands for Through Advancing Innovative Neurotechnologies and will include $100 million in government investments in research.

"Scientists have spent a lot of time looking at the physical connections between different regions of the brain. But that information is not sufficient unless we examine how those connections function," Mohanty said. "That's where two-photon optogenetics comes into play. This is a tool not only to control the neuronal activity but to understand how the brain works."

The two-photon optogenetic stimulation described in the Optics Letter paper involves introducing the gene for ChR2, a protein that responds to light, into a sample of excitable cells. A fiber-optic infrared beam of light can then be used to precisely excite the neurons in a tissue circuit.

In the , researchers would then observe responses in the excited area as well as other parts of the . In living subjects, scientists would also observe the behavioral outcome, Mohanty said.

Optogenetic stimulation avoids damage to living tissue by using light to stimulate neurons instead of electric pulses used in past research. Mohanty's method of using low-energy near-infrared light also enables more precision and a deeper focus than the blue or green light beams often used in optogenetic stimulation, the paper said.

Using fiber optics to deliver the two-photon optogenetic beam is another advance. Previous methods required bulky microscopes or complex scanning beams. Mohanty's group is collaborating with UT Arlington Department of Psychology assistant professor Linda Perrotti to apply this technology in living animals.

"Dr. Mohanty's innovations continue to be recognized because of the great potential they hold," said Pamela Jansma, dean of the UT Arlington College of Science. "Hopefully, his work will one day provide researchers in other fields the tools they need to examine how the human body works and why normal processes sometimes fail."

Explore further: 'Dressed' laser aimed at clouds may be key to inducing rain, lightning

More information: The paper in Optics Letters is called "Fiber-optic two-photon optogenetic stimulation" and it is available online at www.opticsinfobase.org/ol/upcoming.cfm?page=2

Related Stories

Study magnetizes carbon nanoparticles for cancer therapy

Feb 24, 2012

(PhysOrg.com) -- A team of University of Texas at Arlington researchers have developed a method that uses magnetic carbon nanoparticles to target and destroy cancer cells through laser therapy - a treatment ...

Physicists 'turn signals' for neuron growth

Dec 15, 2011

(PhysOrg.com) -- A new paper scheduled for publication in the January issue of Nature Photonics describes the use of spinning microparticles to direct the growth of nerve fiber, a discovery that could allow ...

Controlling monkey brains and behavior with light

Jul 26, 2012

Researchers reporting online on July 26 in Current Biology have for the first time shown that they can control the behavior of monkeys by using pulses of blue light to very specifically activate particular brain cells. The fi ...

Recommended for you

Robotics goes micro-scale

Apr 17, 2014

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

User comments : 0

More news stories

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...