Researchers develop synthetic HDL cholesterol nanoparticles

May 14, 2013 by Alan Flurry
Researchers develop synthetic HDL cholesterol nanoparticles

(Phys.org) —Atherosclerosis, a buildup of cellular plaque in the arteries, remains one of the leading causes of death globally. While high-density lipoprotein, or HDL, the so-called good cholesterol, is transferred to the liver for processing, low-density lipoprotein, or LDL, builds up in the arteries in the form of plaque.

Early detection of cellular components in the plaque that rupture and block arteries have long been held as potentially effective detection for heart diseases and their link to atherosclerosis.

A new study by University of Georgia researchers in the Franklin College of Arts and Sciences department of chemistry, published online May 13 in the Proceedings of the National Academy of Sciences, documents a : Synthetic nanoparticles. A completely biodegradable of the so-called , the nanoparticles represent a potential new detection and therapy regimen for atherosclerosis.

In the process of developing a nanoparticle sensor to detect unstable in , study coauthors assistant professor Shanta Dhar and graduate student Sean Marrache constructed the lipoprotein nanoparticle in Dhar's NanoTherapeutics Research Laboratory. In bench-scale animal trials, the synthetic HDL-mimicking nanoparticle showed significant reductions in total cholesterol and triglycerides.

"In creating all the processes for the nanoparticle to mimic the natural HDL and carry a signaling output, we were able to demonstrate excellent biocompatibility," Dhar said. "If we simply leave out the sensor, we have a very promising therapy for triglyceride reduction in the bloodstream."

High-density-lipoprotein-mimicking nanoparticles have been created previously, though in published reports particles have been reconstituted from human blood. Though successful, these particles face many challenges in reproduction and scale-up for manufacturing, including variability in immune responses.

"Researchers have used reconstituted versions of HDL from blood, which will always have its drawbacks," Marrache said. "By creating this particle from scratch, we are able to bypass many of the drawbacks while accomplishing all of the positive aspects of HDL delivery."

Dhar's synthetic HDL nanoparticle is a polymer lipid hybrid, requiring fewer amino acids and thus better suited for potential scale-up. The researchers used an FDA-approved biodegradable polymer as a matrix and mixed it with cholesterol ester, a component in natural HDL, to create the high-density lipoprotein core. They introduced a mimetic peptide that adheres to the nanoparticle with the precision of natural HDL.

"Chemists always seek to make things more synthetic, and, with me, the goal is always to make the product biodegradable," she said. "That was the unique combination that led us to come up with these technologies that hold promise for translational tools that could aid in early diagnosis and prevent vulnerable plaque progression."

Her department head agrees. "Professor Dhar has quickly built a research program in nanomaterial-based therapeutics during her three years at UGA and achieved remarkable success in a short period of time," said Jonathan Amster, who also is a chemistry professor at UGA.

Explore further: Experts cautious over Google nanoparticle project

More information: www.pnas.org/content/early/2013/05/09/1301929110

Related Stories

Low HDL-cholesterol—Not quantity, but quality

Apr 30, 2013

Many of the genes regulating the inflammation and immune response of the body are also associated with low HDL-cholesterol levels in the circulation, tells the recent study conducted at the University of ...

Recommended for you

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

New nanodevice to improve cancer treatment monitoring

Oct 27, 2014

In less than a minute, a miniature device developed at the University of Montreal can measure a patient's blood for methotrexate, a commonly used but potentially toxic cancer drug. Just as accurate and ten ...

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.