Superfluids: Observation of 'second sound' in a quantum gas

May 15, 2013
The cigar-shaped particle cloud is locally heated with a power-modulated laser beam (green). Credit: IQOQI/Ritsch

Second sound is a quantum mechanical phenomenon, which has been observed only in superfluid helium. Physicists from the University of Innsbruck, Austria, in collaboration with colleagues from the University of Trento, Italy, have now proven the propagation of such a temperature wave in a quantum gas. The scientists have published their historic findings in the journal Nature.

Below a , certain fluids become superfluid and lose internal friction. In addition, fluids in this state conduct heat extremely efficiently, with energy transport occurring in a distinct temperature wave. Because of the similarities to a sound wave, this temperature wave is also called second sound. To explain the nature of superfluids, the famous physicist Lev Landau developed the theory of two-fluid hydrodynamics in Moscow in 1941. He assumed that fluids at these low temperatures comprise a superfluid and a normal component, whereby the latter one gradually disappears with decreasing temperature. Until now superfluidity has experimentally been observed only in and in ultracold quantum gases. Another example of a superfluid system is a neutron star, and evidence also been found in the . Superfluidity is closely connected to the technologically important superconductivity, the phenomenon of zero at very low temperatures.

Observation of temperature waves

Ultracold quantum gases are ideal model systems to experimentally observe quantum mechanical phenomena such as superfluidity. In these experiments hundreds of thousands of atoms are cooled in a to almost absolute zero (−273.15 °C). By using lasers the particles in this state can be controlled and manipulated efficiently and with high accuracy. "Despite intensive research in this field for over ten years now, the phenomenon of second sound has proven elusive for detection in quantum gases," says Rudolf Grimm from the Institute of at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences. "However, in the end it was amazingly easy to prove." In the laboratory, Grimm's team of quantum physicists prepared a quantum gas consisting of about 300,000 lithium atoms. They heated the cigar-shaped particle cloud locally with a power-modulated laser beam and then observed the propagating temperature wave. "While in superfluid helium only one entropy wave is generated, our Fermi gas also exhibited some thermal expansion and, thus, a measurable density wave," explains Grimm the crucial difference. It was also the first time that the Innsbruck physicists were able to measure the superfluid fraction in the . "Before us nobody had been able to achieve this, which closes a fundamental gap in the research of Fermi gases," says Rudolf Grimm.

Confirming a theory after 50 years

The research work, published now in the journal Nature, is the result of a long-term close collaboration between the physicists in Innsbruck and the Italian scientists. The theoretical physicists from the Trento Bose-Einstein Condensation Center led by Sandro Stringari and Lev Pitaevskii adapted Lev Landau's theory of the description of second sound for the almost one-dimensional geometry of the Innsbruck experiments. Actually Lev Pitaevskii was one of Lev Landau's pupils. "With this model it became easy to interpret the results of our measurement," says Rudolf Grimm. "Moreover, our colleagues from Trento intensely supported our experiment conceptually. The results represent the pinnacle of the collaboration with our partner university in Trento and it is a vital indication for research cooperation within the European Region the Tyrol-South Tyrol-Trentino." In June the University of Innsbruck will award an Honorary Doctorate to Lev Pitaevskii for his close collaboration with the local scientists.

Explore further: Ultracold chemistry: First direct observation of exchange process in quantum gas

More information: Paper: dx.doi.org/10.1038/nature12136

Related Stories

Pinning atoms into order

July 28, 2010

In an international first, physicists of the University of Innsbruck, Austria have experimentally observed a quantum phenomenon, where an arbitrarily weak perturbation causes atoms to build an organized structure from an ...

An icy gaze into the Big Bang

March 18, 2011

(PhysOrg.com) -- Scientists of the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, have reached a milestone in the exploration of quantum gas mixtures. In an international first, the research ...

Playing quantum tricks with measurements

February 15, 2013

A team of physicists at the University of Innsbruck, Austria, performed an experiment that seems to contradict the foundations of quantum theory—at first glance. The team led by Rainer Blatt reversed a quantum measurement ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

axemaster
not rated yet May 15, 2013
This is quite an achievement, these researchers should be very proud!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.