Activity continues on the Sun

May 15, 2013
NASA's Solar Dynamics Observatory captured this image of the X1.2 class solar flare on May 14, 2013. The image show light with a wavelength of 304 angstroms. Credit: NASA/SDO

(Phys.org) —Solar activity continued on May 14, 2013, as the sun emitted a fourth X-class flare from its upper left limb, peaking at 9:48 p.m. EDT.

This flare is classified as an X1.2 flare and it is the 18th X-class flare of the current . The flare caused a radio blackout – categorized as an R3, or strong, on NOAA's space weather scales from R1 to R5—which has since subsided.

The flare was also associated with a non-Earth-directed CME. CMEs and flares are separate but related : solar flares are powerful bursts that send light and radiation into space; CMEs erupt with billions of tons of solar material. They often, but do not always, occur together. Any time we can see a solar flare from Earth's view, than at least some of its light and radiation must be directed at Earth. CMEs on the other hand may or may not be Earth directed. NASA observes CMEs, however, even when they are not traveling toward Earth, because they may impact spacecraft.

NASA's Solar Dynamics Observatory captured an image of the X1.2 class on May 14, 2013.

These images from NASA's Solar Dynamics Observatory show four X-class flares emitted on May 12-14, 2013 -- the first four X-class flares of 2013. Each panel is a blend of two images one showing light in the 171 Angstrom wavelength and the other in 131 Angstroms. Credit: NASA/SDO/GSFC

Experimental NASA research models show that this CME left the sun at around 745 miles per second, beginning at 10:18 p.m. EDT. It is not Earth-directed, however it may pass the Spitzer and orbits, and their mission operators have been notified. If warranted, operators can put spacecraft into safe mode to protect the instruments from solar material.

Explore further: The source of the sky's X-ray glow

Related Stories

Three X-class flares in 24 hours

May 14, 2013

The sun emitted a third significant solar flare in under 24 hours, peaking at 9:11 p.m. EDT on May 13, 2013. This flare is classified as an X3.2 flare. This is the strongest X-class flare of 2013 so far, ...

First X-class solar flare of 2013

May 13, 2013

(Phys.org) —On May 12, 2013, the sun emitted a significant solar flare, peaking at 10 p.m. EDT. This flare is classified as an X1.7, making it the first X-class flare of 2013. The flare was also associated ...

NASA sees sun emit mid-level flare

May 03, 2013

(Phys.org) —The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere ...

Spring fling: Sun emits a mid-level flare

Apr 11, 2013

UPDATE: The M6.5 flare on the morning of April 11, 2013, was also associated with an Earth-directed coronal mass ejection (CME), another solar phenomenon that can send billions of tons of solar particles ...

Earth-directed coronal mass ejection from the sun

Mar 15, 2013

(Phys.org) —On March 15, 2013, at 2:54 a.m. EDT, the sun erupted with an Earth-directed coronal mass ejection (CME), a solar phenomenon that can send billions of tons of solar particles into space and can ...

Sun spits out two CMEs

Mar 13, 2013

The sun recently erupted with two coronal mass ejections (CMEs). One began at 8:36 p.m. EDT on March 12, 2013 and is directed toward three NASA spacecraft, Spitzer, Kepler and Epoxi. There is, however, no ...

Recommended for you

Titan offers clues to atmospheres of hazy planets

2 hours ago

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Having fun with the equation of time

2 hours ago

If you're like us, you might've looked at a globe of the Earth in elementary school long before the days of Google Earth and wondered just what that strange looking figure eight thing on its side was.

The source of the sky's X-ray glow

21 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

User comments : 0