Setting standards for protein localisation

May 09, 2013
Experimentally-determined subcellular localisation of almost 500 human proteins. The localisations of proteins were determined using both immunofluorescence and GFP-tagging, with each protein being assigned to a localisation class (CY, cytoplasm; CSK, cytoskeleton; ER, endoplasmic reticulum; GO, Golgi apparatus; MI, mitochondria; NU, nucleus; PM, plasma membrane; VE, vesicle). Each node represents a protein, with dark green nodes indicating identical localisations recorded between the two methods, light green nodes indicating similar localisations between the two methods, and red nodes indicating conflicting localisations between the two methods.

(Phys.org) —In order to understand how cells work, scientists first need to establish where every single protein in the cell resides. In the largest study of its kind to date, the two most widely used microscopy-based methods that can be applied to this task have been compared.

The international collaboration led by Conway Fellow, Professor Jeremy Simpson, UCD School of Biology & Environmental Science and Professor Emma Lundberg, KTH-Stockholm looked at more than 500 proteins using antibody-based localisation and fluorescent protein tagging methods.

Their findings show that by following a defined set of rules, both antibody-based and fluorescent-tagging methods are highly complementary to each other, and show a high degree of correlation for the determination of protein localisation in .

The study also provides a significant and experimentally validated data set of protein localisation in mammalian cells, which in itself is a valuable resource for the scientific community.

According to Professor Simpson, "The debate of whether antibodies or fluorescent protein tagging is the most reliable method to determine localisation has been going on for more than 15 years.

In addition to determining the localisation of more than 500 proteins, half of which had no previous localisation annotation, this study has allowed us to address a key experimental issue.

This work is expected to set the standard methodology for ultimately determining the localisation of the entire human proteome.

Explore further: Scientists advance important microscopic technique for biomedical research

More information: Stadler, C. et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells, Nature Methods (2013) Feb 24 doi: 10.1038/nmeth.2377. [Epub ahead of print].

add to favorites email to friend print save as pdf

Related Stories

Biologists produce rainbow-colored algae

Mar 07, 2013

What can green algae do for science if they weren't, well, green? That's the question biologists at UC San Diego sought to answer when they engineered a green alga used commonly in laboratories, Chlamydomonas reinhardtii, into a ...

Soy is on top as a high-quality plant protein

Dec 06, 2011

The importance of protein in the human body is undeniable. However, the idea of what makes a protein a "quality protein" has not been as easy to determine. A new study from the Journal of Agriculture and Food Chemistry takes ...

Chemists develop faster, more efficient protein labeling

Feb 05, 2012

North Carolina State University researchers have created specially engineered mammalian cells to provide a new "chemical handle" which will enable researchers to label proteins of interest more efficiently, without disrupting ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.