Setting standards for protein localisation

May 09, 2013
Experimentally-determined subcellular localisation of almost 500 human proteins. The localisations of proteins were determined using both immunofluorescence and GFP-tagging, with each protein being assigned to a localisation class (CY, cytoplasm; CSK, cytoskeleton; ER, endoplasmic reticulum; GO, Golgi apparatus; MI, mitochondria; NU, nucleus; PM, plasma membrane; VE, vesicle). Each node represents a protein, with dark green nodes indicating identical localisations recorded between the two methods, light green nodes indicating similar localisations between the two methods, and red nodes indicating conflicting localisations between the two methods.

(Phys.org) —In order to understand how cells work, scientists first need to establish where every single protein in the cell resides. In the largest study of its kind to date, the two most widely used microscopy-based methods that can be applied to this task have been compared.

The international collaboration led by Conway Fellow, Professor Jeremy Simpson, UCD School of Biology & Environmental Science and Professor Emma Lundberg, KTH-Stockholm looked at more than 500 proteins using antibody-based localisation and fluorescent protein tagging methods.

Their findings show that by following a defined set of rules, both antibody-based and fluorescent-tagging methods are highly complementary to each other, and show a high degree of correlation for the determination of protein localisation in .

The study also provides a significant and experimentally validated data set of protein localisation in mammalian cells, which in itself is a valuable resource for the scientific community.

According to Professor Simpson, "The debate of whether antibodies or fluorescent protein tagging is the most reliable method to determine localisation has been going on for more than 15 years.

In addition to determining the localisation of more than 500 proteins, half of which had no previous localisation annotation, this study has allowed us to address a key experimental issue.

This work is expected to set the standard methodology for ultimately determining the localisation of the entire human proteome.

Explore further: How plant cell compartments change with cell growth

More information: Stadler, C. et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells, Nature Methods (2013) Feb 24 doi: 10.1038/nmeth.2377. [Epub ahead of print].

add to favorites email to friend print save as pdf

Related Stories

Biologists produce rainbow-colored algae

Mar 07, 2013

What can green algae do for science if they weren't, well, green? That's the question biologists at UC San Diego sought to answer when they engineered a green alga used commonly in laboratories, Chlamydomonas reinhardtii, into a ...

Soy is on top as a high-quality plant protein

Dec 06, 2011

The importance of protein in the human body is undeniable. However, the idea of what makes a protein a "quality protein" has not been as easy to determine. A new study from the Journal of Agriculture and Food Chemistry takes ...

Chemists develop faster, more efficient protein labeling

Feb 05, 2012

North Carolina State University researchers have created specially engineered mammalian cells to provide a new "chemical handle" which will enable researchers to label proteins of interest more efficiently, without disrupting ...

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0