Squishy hydrogels may be the ticket for studying biological effects of nanoparticles

May 15, 2013
Squishy hydrogels may be the ticket for studying biological effects of nanoparticles
Credit: Mansfield/NIST

(Phys.org) —A class of water-loving, jelly-like materials with uses ranges ranging from the mundane, such as superabsorbent diaper liners, to the sophisticated, such as soft contact lenses, could be tapped for a new line of serious work: testing the biological effects of nanoparticles now being eyed for a large variety of uses.

New research by scientists at the National Institute of Standards and Technology (NIST) demonstrates that three-dimensional scaffolds made with cells and supporting materials known as hydrogels can serve as life-like measurement platforms for evaluating how tiny interact with cells and tissues. Their proof-of-concept study suggests that hydrogel tissue scaffolds can be a "powerful bridge" between current laboratory tests and tests that use animal models.

Today, laboratory tests of usually entail exposing a two-dimensional layer of cells to the material of interest. Besides being questionable substitutes for the complex cellular frameworks that make up tissues and organs inside the body, these tests can yield conflicting results, explains analytical chemist Elisabeth Mansfield, lead researcher on the new NIST study.

"Our study shows that hydrogel-based, tissue-engineering scaffolds can provide more realistic environments to study nanoparticle-influenced over extended periods," she says. Importantly, the NIST research shows that studies employing the do not require exposing cells to nanoparticles in doses that exceed normal exposure levels.

Hydrogels are networks of stringy, branching with ends that latch onto —so much so that 99.9 percent of a hydrogel may consist of water. Depending on the spacing between the strands (the so-called mesh size) and other factors, hydrogels can support and promote the growth and differentiation of .

While hydrogels occur naturally—an example is cartilage—the NIST team chose to craft its own, giving them control over the mesh size in the scaffolds they created.

In their experiment, the team used polyethylene glycol—a common polymer used in skin creams, toothpaste, lubricants and other products—to create three hydrogels with different mesh sizes. One set of hydrogels was populated with rat cells containing ultrasmall semiconducting materials known as quantum dots. When exposed to light, quantum dots emit strong fluorescent signals that enabled the researchers to track the fate of treated cells in the synthetic scaffolds.

Results were compared with those for similarly treated cells grown in a single layer on a substrate, akin to standard laboratory toxicology tests.

The NIST researchers found that cells diffused through the hydrogel scaffold, forming a persisting tissue-like structure. Quantum dots attached to cell membranes and, over time, were absorbed into the cells.

Three-dimensional scaffolds often are used to test cells for multi-week experiments, and NIST researchers found quantum dots can be detected for four or more days inside the scaffold.

As significant, cells that populated the hydrogel scaffolds were exposed to lower levels of , yielding a more representative scenario for evaluating biological effects.

The NIST team concludes that, compared with conventional cell cultures, hydrogel scaffolds provide a more realistic, longer-lived biological environment for studying how engineering nanoparticles interact with cells. In addition, the scaffolds will accommodate studies of how these interactions evolve over time and of how the physical features of nanoparticles may change.

Explore further: Researchers successfully combine two different materials to create new hyper-efficient light-emitting crystal

More information: Mansfield, E. et al. Three-dimensional hydrogel constructs for exposing cells to nanoparticles. Nanotoxicology, 2013; Early Online. DOI: 10.3109/17435390.2013.790998.

Related Stories

Engineering team designs 'living materials'

March 23, 2014

Inspired by natural materials such as bone—a matrix of minerals and other substances, including living cells—MIT engineers have coaxed bacterial cells to produce biofilms that can incorporate nonliving materials, such ...

Recommended for you

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.