Spheres can form squares

May 24, 2013
Spheres can form squares
Particle organization on oil-water interface of a droplet. The particles are labeled with a fluorescent marker to make them visible.

Everybody who has tried to stack oranges in a box knows that a regular packing of spheres in a flat layer naturally leads to a hexagonal pattern, where each sphere is surrounded by six neighbours in a honeycomb-like fashion. In an article just published on-line in PNAS, researchers from Wageningen University report an exception to this rule: when small, micrometer-sized particles are placed on a curved oil-water surface, they arrange in a square pattern, as on a chessboard.

Crystal structures

Since a number of decades, scientists are looking for strategies to create ordered crystal structures of regularly arranged small particles. Such crystals are interesting, because they can be used to control, modulate, or steer visible light in applications like lasers or other . While creating hexagonal patterns is relatively easy – this is the natural way in which the particles tend to order – anything different from that is much more difficult.

Surface tension

The team from the Laboratory of and Colloid Science at Wageningen University, part of Wageningen UR, has now found a way to create square particle arrays. To do this, they make use of the surface tension of the underlying oil-water surface, that is the tendency of the surface to minimize its area. When a particle sticks to the liquid surface it deforms the surface somewhat, and thereby increases the total area. The surface tension acts to minimize these deformations, by clustering all the particles together. This effect is also responsible for the clumping of breakfast cereals in a bowl of milk or of bubbles at the surface of a soft drink.

Attraction and repulsion

The researchers have found that this effective attraction between particles resulting from the depends on how the is curved. A slight curving of the surface already makes the interaction between particles highly dependent on their relative orientation, with attraction in two perpendicular directions and repulsion in the other directions. This is what causes the particles to arrange spontaneously in square patterns.

High-tech optical applications

The researchers believe that their findings will lead to new bottom-up strategies for the design of structured materials, to be used in high-tech optical applications.

Explore further: Galaxy dust findings confound view of early Universe

More information: Ershov, D. et al. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature, PNAS (early edition, May 2013).

add to favorites email to friend print save as pdf

Related Stories

Researchers track nanoparticle dynamics in three dimensions

Aug 03, 2012

(Phys.org) -- Researchers from the NIST Center for Nanoscale Science and Technology have used three-dimensional single-particle tracking to measure the dynamic behavior of individual nanoparticles adsorbed at the surface ...

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.