Solid-state controllable light filter may protect preterm infants from disturbing light

May 06, 2013

Preterm infants appear to mature better if they are shielded from most wavelengths of visible light, from violet to orange. But it has been a challenge to develop a controllable light filter for preterm incubators that can switch between blocking out all light—for sleeping—and all but red light to allows medical staff and parents to check up on the kids when they're awake. Now, in a paper accepted for publication in Applied Physics Letters, a journal of the American Institute of Physics, researchers describe a proof-of-concept mirror that switches between reflective and red-transparent states when a small voltage is applied.

The research team had previously identified a magnesium-iridium reflective thin film that transforms into a red-transparent state when it incorporates protons. Providing those protons in a way that is practical for preterm incubators, however, was the challenge. The typical method—using dilute —is unacceptable in a hospital setting. So the team created a stack of that includes both an ion storage layer and the magnesium-iridium layer: a voltage drives protons from the ion storage layer to the magnesium-iridium layer, transforming it into its red-transparent state. Reversing the voltage transforms it back into a reflective mirror.

The researchers report that the device still allows some undesirable light wavelengths through, but a force of just 5 V changes the device's state in as little as 10 seconds. The researchers are now looking at other materials to improve color filtering and switching speed.

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

More information: "Controllable light filters using an all-solid-state switchable mirror with a Mg-Ir thin film for preterm infant incubators," is published in Applied Physics Letters. apl.aip.org/resource/1/applab/v102/i16/p161913_s1

add to favorites email to friend print save as pdf

Related Stories

Making efficient color filter for display applications

Aug 29, 2012

Flat panel displays, mobile phones and many digital devices require thin, efficient and low-cost light-emitters for applications. The pixels that make up the different colors on the display are typically ...

New invisibility cloak hides objects from human view

Jul 27, 2011

For the first time, scientists have devised an invisibility cloak material that hides objects from detection using light that is visible to humans. The new device is a leap forward in cloaking materials, according to a report ...

New plasma transistor could create sharper displays

Feb 04, 2009

(PhysOrg.com) -- By integrating a solid-state electron emitter and a microcavity plasma device, researchers at the University of Illinois have created a plasma transistor that could be used to make lighter, ...

Recommended for you

What time is it in the universe?

16 hours ago

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0