Scientists detect residue that has hindered efficiency of promising type of solar cell

May 06, 2013 by Jared Sagoff
Scientists detect residue that has hindered efficiency of promising type of solar cell
Because of their potential to reduce costs for both fabrication and materials, organic photovoltaics could be much cheaper to manufacture than conventional solar cells and have a smaller environmental impact as well.

(Phys.org) —Drivers who have ever noticed a residue on their windshields after going through a car wash will sympathize with nanoscientist Seth Darling's pain.

Darling and his colleagues at the U.S. Department of Energy's Argonne National Laboratory have worked for years to develop a new type of solar cell known as organic photovoltaics (OPVs). Because of their potential to reduce costs for both fabrication and materials, OPVs could be much cheaper to manufacture than conventional and have a smaller environmental impact as well.

The major drawback of OPVs, however, is they aren't as efficient as conventional solar cells. In a new study, Darling and his colleagues at Argonne's Center for and (APS) were able to detect for the first time a major contributing factor to this limitation: trace residues of catalyst material left over from the development process prevent the OPVs from converting the maximum amount of sunlight to electricity.

"Scientists have recently become aware that can cause problems in these , but until now, we didn't have a way of actually being able to see that the impurities were even there," Darling said.

Although many previously used techniques lacked the ability to identify the presence of a remaining catalyst, Argonne physicists Barry Lai and Jörg were able to get a clear picture of the impurities by using a technique called X-ray fluorescence, which involves high-intensity X-rays from the APS.

The residual impurities impede the performance of the solar cell because they tend to "trap" the electrical charges that the solar cell generates after it is hit by a photon. The involved in the development process – specifically palladium – cause the trapping effect.

The next step for the research involves looking at ways to remedy or prevent the trapping, but in the meantime, chemists and manufacturers of organic solar cell materials have already begun to take note and pay attention to the quantity of residual catalyst left behind in their products.

According to Darling, researchers had been aware for some time of an analogous problem in organic light-emitting devices, which work on the reverse principle of solar cells – rather than converting light to electricity, they convert electricity to light. "It's actually a bit surprising that scientists didn't recognize that this problem could also occur in solar cells until relatively recently," Darling said.

The results of the research are published in an article titled "Detection and role of trace impurities in high-performance organic solar cells" in the May 2013 issue of Energy and Environmental Science.

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

Related Stories

Recommended for you

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.