Scientists detect residue that has hindered efficiency of promising type of solar cell

May 6, 2013 by Jared Sagoff
Scientists detect residue that has hindered efficiency of promising type of solar cell
Because of their potential to reduce costs for both fabrication and materials, organic photovoltaics could be much cheaper to manufacture than conventional solar cells and have a smaller environmental impact as well.

(Phys.org) —Drivers who have ever noticed a residue on their windshields after going through a car wash will sympathize with nanoscientist Seth Darling's pain.

Darling and his colleagues at the U.S. Department of Energy's Argonne National Laboratory have worked for years to develop a new type of solar cell known as organic photovoltaics (OPVs). Because of their potential to reduce costs for both fabrication and materials, OPVs could be much cheaper to manufacture than conventional and have a smaller environmental impact as well.

The major drawback of OPVs, however, is they aren't as efficient as conventional solar cells. In a new study, Darling and his colleagues at Argonne's Center for and (APS) were able to detect for the first time a major contributing factor to this limitation: trace residues of catalyst material left over from the development process prevent the OPVs from converting the maximum amount of sunlight to electricity.

"Scientists have recently become aware that can cause problems in these , but until now, we didn't have a way of actually being able to see that the impurities were even there," Darling said.

Although many previously used techniques lacked the ability to identify the presence of a remaining catalyst, Argonne physicists Barry Lai and Jörg were able to get a clear picture of the impurities by using a technique called X-ray fluorescence, which involves high-intensity X-rays from the APS.

The residual impurities impede the performance of the solar cell because they tend to "trap" the electrical charges that the solar cell generates after it is hit by a photon. The involved in the development process – specifically palladium – cause the trapping effect.

The next step for the research involves looking at ways to remedy or prevent the trapping, but in the meantime, chemists and manufacturers of organic solar cell materials have already begun to take note and pay attention to the quantity of residual catalyst left behind in their products.

According to Darling, researchers had been aware for some time of an analogous problem in organic light-emitting devices, which work on the reverse principle of solar cells – rather than converting light to electricity, they convert electricity to light. "It's actually a bit surprising that scientists didn't recognize that this problem could also occur in solar cells until relatively recently," Darling said.

The results of the research are published in an article titled "Detection and role of trace impurities in high-performance organic solar cells" in the May 2013 issue of Energy and Environmental Science.

Explore further: Argonne 'homegrown' hybrid solar cell aims for low-cost power

Related Stories

Small defects mean big problems for industrial solar cells

October 13, 2011

Nanoscale clustering of metal impurities at intragranular dislocations within industrial mc-Si solar cells have been observed by users from the Massachusetts Institute of Technology working with the Center for Nanoscale Materials ...

Catching some rays: Organic solar cells make a leap forward

June 14, 2012

(Phys.org) -- Drawn together by the force of nature, but pulled apart by the force of man – it sounds like the setting for a love story, but it is also a basic description of how scientists have begun to make more efficient ...

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.