Computer scientist publishes new algorithm cluster to data mine health records

May 14, 2013

The time may be fast approaching for researchers to take better advantage of the vast amount of valuable patient information available from U.S. electronic health records. Lian Duan, an NJIT computer scientist with an expertise in data mining, has done just that with the recent publication of "Adverse Drug Effect Detection," IEEE Journal of Biomedical and Health Informatics (March, 2013).

The article spotlights a new and promising way of using a combination of commonly used existing algorithms to root out more information about within electronic health records available to the researchers. The new pattern, which when compared against the most commonly used existing sole algorithm, showed an almost 25 percent improvement in outcome. Although the idea could theoretically be applied beyond , this paper focuses only on using them to find adverse medical reactions to a drug therapy.

"Large collections of have long provided abundant, but under-explored information on the real-world use of medicines. But when used properly these records can provide longitudinal observational data which is perfect for data mining," Duan said. "Although such records are maintained for patient administration, they could provide a broad range of clinical information for data analysis. A growing interest has been drug safety."

In this paper, the researchers proposed two —a likelihood ratio model and a Bayesian network model—for adverse drug effect discovery. Although the performance of these two algorithms is comparable to the state-of-the-art algorithm, Bayesian confidence propagation neural network, by combining three works, the researchers say one can get better, more diverse results.

Since the actual adverse drug effects on a given dataset cannot be absolutely determined, the researchers made use of a simulated observational partnership dataset. They constructed this "dataset" with the predefined adverse drug effects to evaluate their methods.

Experimental results show the usefulness of the proposed pattern discovery method on the simulated dataset by improving the standard baseline algorithm—chi-square—by 23.83 percent.

Duan, whose innovative research on large-scale data mining has applications in the business world as well as many industries, including marketing, social networking and bioinformatics. Whereas most data mining experts search for correlation pairs, he focuses on correlated sets of arbitrary size. His research focuses on correlation search, community detection, and density-based clustering and outlier detection.

Duan holds two doctorates— one in computer science from the Chinese Academy of Sciences, China, and the other in information systems with an emphasis on data mining from the University of Iowa.

Explore further: MIT groups develop smartphone system THAW that allows for direct interaction between devices

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Tim Cook puts personal touch on iPhone 6 launch

6 minutes ago

Apple chief Tim Cook personally kicked off sales of the iPhone 6, joining in "selfies" and shaking hands with customers Friday outside the company's store near his Silicon Valley home.

Team improves solar-cell efficiency

15 hours ago

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

15 hours ago

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

User comments : 0