Overcoming resistance to anti-cancer drugs by targeting cell 'powerhouses'

May 22, 2013
Overcoming resistance to anti-cancer drugs by targeting cell ‘powerhouses’
Targeting anti-cancer drugs to mitochondria — the “power plants” in cells — is a promising but overlooked approach to preventing emergence of drug-resistant forms of cancer. Credit: Dorling Kindersley RF/Thinkstock

Re-routing anti-cancer drugs to the "power plants" that make energy to keep cells alive is a promising but long-neglected approach to preventing emergence of the drug-resistant forms of cancer—source of a serious medical problem, scientists are reporting. That's the conclusion of a new study published in the journal ACS Chemical Biology.

Shana Kelley and colleagues explain that doxorubicin and other common forms of chemotherapy work by damaging the genes inside the nucleus of . Cancer cells divide and multiply faster than surrounding normal cells, making copies of their genes. The drugs disrupt that process. But cancer cells eventually adapt, developing structures that pump out nucleus-attacking drugs before they can work. Kelley's team explored the effects of targeting doxorubicin to the mitochondria, the energy-producing structures in cells that also contain genes.

Overcoming resistance to anti-cancer drugs by targeting cell 'powerhouses'

They describe a re-targeting approach that involved mating doxorubicin with a small piece of protein that made the drug travel to mitochondria instead of the nucleus. The combo killed cancer cells, even those that had developed pumps. Such an approach could work with a whole family of anti- that target the nucleus, the scientists indicate.

Explore further: Cells build 'cupboards' to store metals

More information: "Targeted Delivery of Doxorubicin to Mitochondria," ACS Chemical Biology. DOI: 10.1021/cb400095v

Abstract
Several families of highly effective anticancer drugs are selectively toxic to cancer cells because they disrupt nucleic acid synthesis in the nucleus. Much less is known, however, about whether interfering with nucleic acid synthesis in the mitochondria would have significant cellular effects. In this study, we explore this with a mitochondrially targeted form of the anticancer drug doxorubicin, which inhibits DNA topoisomerase II, an enzyme that is both in mitochondria and nuclei of human cells. When doxorubicin is attached to a peptide that targets mitochondria, it exhibits significant toxicity. However, when challenged with a cell line that overexpresses a common efflux pump, it does not exhibit the reduced activity of the nuclear-localized parent drug and resists being removed from the cell. These results indicate that targeting drugs to the mitochondria provides a means to limit drug efflux and provide evidence that a mitochondrially targeted DNA topoisomerase poison is active within the organelle.

add to favorites email to friend print save as pdf

Related Stories

Overcoming cancer drug resistance with nanoparticles

Jan 20, 2012

One of the ways in which cancer cells evade anticancer therapy is by producing a protein that pumps drugs out of the cell before these compounds can exert their cell-killing effects. A research team at Northwestern University ...

Under-twisted DNA origami delivers cancer drugs to tumors

Sep 13, 2012

Scientists at Karolinska Institutet in Sweden describe in a new study how so-called DNA origami can enhance the effect of certain cytostatics used in the treatment of cancer. With the aid of modern nanotechnology, scientists ...

How gold nanoparticles can help fight ovarian cancer

May 21, 2013

Positively charged gold nanoparticles are usually toxic to cells, but cancer cells somehow manage to avoid nanoparticle toxicity. Mayo Clinic researchers found out why, and determined how to make the nanoparticles effective ...

Recommended for you

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.