Researchers forward quest for quantum computing

May 23, 2013

Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality.

An on-going collaboration between physicists from York and the University of Wisconsin, Milwaukee, USA, is focusing on understanding, tailoring and tuning the electronic properties of topological insulators (TI) - new materials with surfaces that host a of matter – at the nanoscale.

Understanding the properties of of the new materials and integrating them with semiconductors is an important step in creating a materials platform for quantum computers.

Professor Lian Li, from UW-Milwaukee, said: "The electrons on the surface of this material have some intriguing properties. All electrons are spinning in a quantum mechanical way, and spins are constantly knocked by random collisions (scattering).

"But on the surface of a topological insulator spinning electrons are protected from disruption by , called time-reversal symmetry protection. This makes the materials attractive for spin-related electronics, or '', which would use the orientation of the to encode information.

"In this work, we wanted to investigate if these properties of surface electrons are indeed 'protected' from scattering off of imperfections such as , a type of native and commonly found defect in the thin films made by nano size films growth techniques. And we found that these properties, although slightly modified, are indeed robust against such scattering effects."

Results of the team's latest research, which shows that the unique properties of a TI can be modified by intrinsic defects present in Bi2Se3 films when grown on graphene/ (SiC), were featured on the front cover of a recent issue of the journal Physical Review Letters.

Dr Vlado Lazarov, from York's Department of Physics, said: "Topological insulators are like no other material we have seen before and can host completely new physics. Their surfaces are unique charge and spin conductors, with no dissipation. The perfectly aligned spin currents make topological insulators a prime platform for spintronics, a research field that is already revolutionising magnetic data storage.

"The challenge is to keep these properties at the microscopic scale so that they can be applied to . We are exploring the properties of thin films, and questions such as whether inherent defects enhance or modify the materials' properties. We need to understand how to engineer these defects so that we can control the electronic properties of topological insulators if the dream of quantum computing is to become a reality."

Explore further: Deeper understanding of quantum fluctuations in 'frustrated' layered magnetic crystals

More information: Liu, Y. et al. Charging Dirac States at Antiphase Domain Boundaries in the Three-Dimensional Topological Insulator Bi2Se3, Physical Review Letters, (2013). prl.aps.org/ 110, 186804

add to favorites email to friend print save as pdf

Related Stories

Engineers show feasibility of superfast materials

Feb 13, 2013

(Phys.org)—University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their edges, but act as an insulator inside. These materials, called ...

Recommended for you

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

3,000 atoms entangled with a single photon

Mar 25, 2015

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.