Building protocells from inorganic nanoparticles

May 10, 2013
Building protocells from inorganic nanoparticles

(Phys.org) —Researchers at the University of Bristol have led a new enquiry into how extremely small particles of silica (sand) can be used to design and construct artificial protocells in the laboratory. The work is described in an article published in Nature Chemistry.

Cells are the basic unit of life and are separated from the outside world by a thin organic membrane. A major function of this membrane is to allow certain molecules to enter or leave the cell whilst other molecules are blocked from the . This allows metabolic processes to take place efficiently and selectively. Controlling membrane permeability is therefore a key challenge when building in the form of enclosed chemical systems, particularly so when the membrane is constructed from simple inorganic components.

Professor Stephen Mann and Dr Mei Li in the School of Chemistry have now addressed this problem by attaching a thin to the external surface of an artificial inorganic protocell built from silica nanoparticles.

When the polymer layer is absent, small molecules readily leach out of or permeate into the inorganic , which render them ineffective for controlling in water. But when the polymer is attached to the silica nanoparticles, changes in pH can be used to regulate the charge on the membrane. As a consequence, small molecules with the same charge as the membrane are prevented from entering or leaving the protocell interior. In this way, the researchers show that an enzyme reaction inside the inorganic protocells can be switched on or off by controlling the membrane permeability.

Professor Stephen Mann said: "This work could open up in synthetic protocell research based on methods of non-biological self-organization. This approach could provide an important counterpart to more mainstream methods of synthetic biology. For example, compared with bioengineered cells, the artificial structures are extremely primitive and unable to evolve, but these attributes might make them particularly safe as materials for delivering drugs and genes, sequestering toxic agents, or sensing important metabolites."

Explore further: Thinnest nanofiltration membrane to date

More information: Li, M. et al. Electrostatically gated membrane permeability in inorganic protocells, Nature Chemistry.

Related Stories

Thinnest nanofiltration membrane to date

July 7, 2011

A recent collaboration between researchers at the University of Chicago and the University of Illinois at Chicago with the Center for Nanoscale Material's Electronic & Magnetic Materials & Devices Group at the Argonne National ...

Researchers decipher the mecanism of membrane fission

October 26, 2012

A cell is composed of a nucleus which encloses its genetic information and the cytoplasm which is itself confined by an external membrane separating the cell from the outside world. The impermeability of the membrane and ...

Pathway for membrane building blocks

January 30, 2013

Biomembranes consist of a mosaic of individual, densely packed lipid molecules. These molecules are formed inside the cells. But how do these building blocks move to the correct part of the membrane? Researchers from Technische ...

Team identifies proton pathway in photosynthesis

April 22, 2013

(Phys.org) —A Purdue University-led team has revealed the proton transfer pathway responsible for a majority of energy storage in photosynthesis. Through photosynthesis, plants, algae and bacteria convert sunlight, carbon ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.