Portable nanodevice provides rapid, accurate diagnosis of tuberculosis, other bacterial infections

May 05, 2013
On this 2.5- by 7.5-cm cartridge, DNA extracted from sputum samples is amplified in the chambers on the left. TB-specific sequences are magnetically labeled in the microfluidic mixing channels in the center and detected by passage through the micro-NMR coil on the right. Credit: Center for Systems Biology, Massachusetts General Hospital

A handheld diagnostic device that Massachusetts General Hospital (MGH) investigators first developed to diagnose cancer has been adapted to rapidly diagnose tuberculosis (TB) and other important infectious bacteria. Two papers appearing in the journals Nature Communications and Nature Nanotechnology describe portable devices that combine microfluidic technology with nuclear magnetic resonance (NMR) to not only diagnose these important infections but also determine the presence of antibiotic-resistant bacterial strains.

"Rapidly identifying the pathogen responsible for an infection and testing for the presence of resistance are critical not only for diagnosis but also for deciding which antibiotics to give a patient," says Ralph Weissleder, MD, PhD, director of the MGH Center for (CSB) and co-senior author of both papers. "These described methods allow us to do this in two to three hours, a vast improvement over standard culturing practice, which can take as much as two weeks to provide a diagnosis."

Investigators at the MGH CSB previously developed portable devices capable of detecting in the blood or in very small tissue samples. or molecules are first labeled with , and the sample is then passed through a micro NMR system capable of detecting and quantifying levels of the target. But initial efforts to adapt the system to bacterial diagnosis had trouble finding antibodies – the detection method used in the earlier studies – that would accurately detect the specific bacteria. Instead the team switched to targeting specific nucleic acid sequences.

The system described in the Nature Communications paper, published on April 23, detects DNA from the in small sputum samples. After DNA is extracted from the sample, any of the target sequence that is present is amplified using a standard procedure, then captured by containing complementary nucleic acid sequences and labeled with magnetic nanoparticles with sequences that bind to other portions of the target DNA. The miniature NMR coil incorporated into the device – which is about the size of a standard laboratory slide – detects any TB bacterial DNA present in the sample.

Tests of the device on samples from patients known to have TB and from healthy controls identified all positive samples with no false positives in less than three hours. Existing diagnostic procedures can take weeks to provide results and can miss up to 40 percent of infected patients. Results were even stronger for patients infected with both TB and HIV – probably because infection with both pathogens leads to high levels of the TB bacteria – and specialized nucleic acid probes developed by the research team were able to distinguish treatment-resistant .

The Nature Nanotechnology paper, being issued online today, describes a similar system using ribosomal RNA (rRNA) – already in use as a bacterial biomarker – as a target for nanoparticle labeling. The investigators developed both a universal nucleic acid probe that detects an rRNA region common to many bacterial species and a set of probes that target sequences specific to 13 clinically important pathogens, including Streptococcus pneumoniae, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA).

The device was sensitive enough to detect as few as one or two bacteria in a 10 ml blood sample and to accurately estimate bacterial load. Testing the system on blood samples from patients with known infections accurately identified the particular bacterial species in less than two hours and also detected two species that had not been identified with standard culture techniques.

While both systems require further development to incorporate all steps into sealed, stand-alone devices, reducing the risk of contamination, Weissleder notes that the small size and ease of use of these devices make them ideal for use in developing countries. "The magnetic interactions that pathogen detection is based on are very reliable, regardless of the quality of the sample, meaning that extensive purification – which would be difficult in resource-limited setting – is not necessary. The ability to diagnose TB in a matter of hours could allow testing and treatment decisions within the same clinic visit, which can be crucial to controlling the spread of TB in developing countries."

Hakho Lee, PhD, of the MGH Center for Systems Biology. co-senior author of both papers, notes that the system will alsohave important applications in developed countries. "The capacity of the system not only to identify bacterial species but also to differentiate factors such as antibiotic resistance will help clinicians treat patients with the 'right' drugs from the start, which also helps reduce the emergence of treatment-resistant strains. The fact that this device requires only a tiny drop of the sample to be tested will be helpful in instances when specimens can be hard to obtain, such as treating children or seniors."

Explore further: A new imaging approach for monitoring cell metabolism

More information: A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria, DOI: 10.1038/nnano.2013.70

Related Stories

Recommended for you

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

EyeNStein
1 / 5 (4) May 05, 2013
Micro NMR reading of DNA- Excellent technique!
The small coil seen on this device generates all the required micro magnetic field; which normally takes a huge helium cooled superconducting ring on a hospital sized MRI machine.
With its built in DNA amplification and enough external computer power to pattern match DNA this could be a huge advance. Even specific antibiotic resistances can be read from the pathogens DNA.
rsklyar
1 / 5 (2) May 06, 2013
Stole you some idea yet? Nature Materials is the best agent! at https://connect.i...sr/blogs (Plagiaristic team ... & A robbery ...) By the way, also Nature Communications - http://phys.org/n...tml#nwlt
arq
not rated yet May 06, 2013
Not just false positives, but false negatives too should be zero.