Polysilane rings: Selective cyclopolymerization using transition metals

May 28, 2013
(a) Nickel-catalyzed polymerization to afford linear or cyclic polysilanes and (b) one of possible intermediates in the cyclopolymerization.

Polysilanes, composed of the Si–Si linkage, exhibit unique electronic and optical properties that result from the extensive delocalization of σ-electrons along the polymer backbones.

Transition-metal-catalyzed dehydrocoupling polymerization of organosilanes is the most common method for the synthesis of polysilanes. Early transition metals such as titanium and are effective catalysts to provide the linear polysilanes, while use of late transition metals (rhodium, palladium, etc.) have been much rarer than the early metals.

Now, Makoto Tanabe and his colleagues at Chemical Resources Laboratory of Tokyo Institute of Technology have found that a nickel complex is very effective for dehydrocoupling reactions of organosilanes, forming the cyclic polysilanes selectively.

The Ni/PMe3 catalytic system, prepared in situ, led to polycondensation of phenylsilanes to produce the linear polysilanes, similar to the results catalyzed by early transition metals. Similar reactions using a Ni/PMe2(CH2)2PMe2 system resulted in selective cyclopolymerization to yield cyclic polysilanes involving the 9-11 silicon units. Formation of a palladium tetrasilane ring complex implies it being a possible intermediate for formation of the cyclic polymers.

This study demonstrates the first controlled to produce linear or cyclic polysilanes by the appropriate choice of catalysts. The cyclic polysilanes might be interested in exhibiting the attributed to the cyclic conjugated structure.

Explore further: Surface dynamics studies yield resilient materials for applications in high-intensity environments

More information: Tanabe, M. et al. Nickel-Catalyzed Cyclopolymerization of Hexyl- and Phenylsilanes, Organometallics 32, 1037 (2013). DOI: 10.1021/om301052f

add to favorites email to friend print save as pdf

Related Stories

Life's origins in need of metals

Sep 10, 2010

Scientists have proposed a new potential catalyst for jump-starting metabolism, and life itself, on the early Earth. Transition metals like iron, copper and nickel along with small organic molecules could ...

Photosynthesis: The last link in the chain

Jan 04, 2013

For almost 30 years, researchers have sought to identify a particular enzyme that is involved in regulating electron transport during photosynthesis. A team at Ludwig-Maximilians-Universität (LMU) in Munich has now found ...

Recommended for you

Breaking benzene

12 hours ago

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0