Organic polymers show sunny potential

May 29, 2013
Organic polymers show sunny potential
Researchers at Rice and Pennsylvania State universities have created solar cells based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers. Credit: Verduzco Laboratory

(Phys.org) —A new version of solar cells created by laboratories at Rice and Pennsylvania State universities could open the door to research on a new class of solar energy devices.

The created in a project led by Rice Rafael Verduzco and Penn State chemical engineer Enrique Gomez are based on , self-assembling organic materials that arrange themselves into distinct layers. They easily outperform other cells with polymer compounds as active elements.

The discovery is detailed online in the American Chemical Society journal Nano Letters.

While commercial, silicon-based solar cells turn about 20 percent of sunlight into electricity and experimental units top 25 percent, there's been an undercurrent of research into polymer-based cells that could greatly reduce the cost of solar energy, Verduzco said. The Rice/Penn State cells reach about 3 percent efficiency, but that's surprisingly better than other labs have achieved using polymer compounds.

"You need two components in a solar cell: one to carry (negative) electrons, the other to carry positive charges," Verduzco said. The imbalance between the two prompted by the input of energy – sunlight – creates useful current.

Since the mid-1980s, researchers have experimented with stacking or mixing polymer components with limited success, Verduzco said. Later polymer/fullerene mixtures topped 10 percent efficiency, but the – in this case, enhanced C-60 – are difficult to work with, he said.

The Rice lab discovered a block copolymer—P3HT-b-PFTBT—that separates into bands that are about 16 nanometers wide. More interesting to the researchers was the polymers' natural tendency to form bands perpendicular to the glass. The copolymer was created in the presence of a glass/ (ITO) top layer at a modest 165 degrees Celsius.

With a layer of aluminum on the other side of the device constructed by the Penn State team, the polymer bands stretched from the top to bottom electrodes and provided a clear path for electrons to flow.

"On paper, block copolymers are excellent candidates for organic solar cells, but no one has been able to get very good photovoltaic performance using block copolymers," Verduzco said. "We didn't give up on the idea of block copolymers because there's really only been a handful of these types of solar cells previously tested. We thought getting good performance using block copolymers was possible if we designed the right materials and fabricated the under the right conditions."

Mysteries remain, he said. "It's not clear why the copolymer organizes itself perpendicular to the electrodes," he said. "Our hypothesis is that both polymers want to be in contact with the ITO-coated glass. We think that forces this orientation, though we haven't proven it yet."

He said the researchers want to experiment with other block copolymers and learn to control their structures to increase the solar cell's ability to capture photons and turn them into electricity. Once they have achieved higher performance from the cells, the team will look at long-term use.

"We'll focus on performance first, because if we can't get it high enough, there's no reason to address some of the other challenges like stability," Verduzco said. Encapsulating a solar cell to keep air and water from degrading it is easy, he said, but protecting it from ultraviolet degradation over time is hard. "You have to expose it to sunlight. That you can't avoid."

Explore further: Demystifying nanocrystal solar cells

More information: pubs.acs.org/doi/abs/10.1021/nl401420s

Related Stories

The fluorescent future of solar cells

May 09, 2013

(Phys.org) —For some solar cells, the future may be fluorescent. Scientists at Yale have improved the ability of a promising type of solar cell to absorb light and convert it into electrical power by adding ...

Coming round to stable self-assembly

May 28, 2013

Nanostructures that assemble themselves from polymer molecules could prove to be useful tools in chemistry and industry. However, it is difficult to develop structurally robust self-assembling materials because ...

A new world record for solar cell efficiency

Jan 17, 2013

In a remarkable feat, scientists at Empa, the Swiss Federal Laboratories for Materials Science and Technology, have developed thin film solar cells on flexible polymer foils with a new record efficiency of ...

Recommended for you

Demystifying nanocrystal solar cells

15 hours ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.