The changing phase of quantum materials: Theoretical model could aid search for ideal material for quantum computers

May 10, 2013
Figure 1: General energy band diagrams for topological insulators showing the change from insulator (left) to semi-metal (center) and topological insulator (right) with increasing pressure. Credit: 2013 American Physical Society

Matter is categorized as either conductive, semi-conductive or resistive to the flow of electrons based on its bulk properties. However, physicists have now predicted a new state of matter in which the bulk of the material is insulating—resisting electron flow—but where electrons are free to move along its edges. The possibility of such a material, known as a 'topological insulator', has caused a great deal of excitement among physicists because its surface conducting states are unusually stable, making them a promising resource for use in quantum computers. Bohm-Jung Yang and Naoto Nagaosa from the RIKEN Center for Emergent Matter Science and their co‐workers have now devised a general theory for how an insulator changes into a topological insulator, which should aid in the practical search for such materials.

A full understanding of a material requires knowledge of how its properties vary as the external environment changes. Increasing the pressure of a gas, for example, can change it to a liquid, and higher pressures cause its atoms to bond together to form a solid crystal. Such changes of state at temperatures near absolute zero are known as quantum phase transitions. The theoretical model developed by Nagaosa's team describes involving topological insulator states.

"We want to understand how two insulating phases with distinct topological properties can be transformed from one to the other when external perturbations are applied," explains Nagaosa. "Our theory shows the importance of atomic symmetry in understanding this topological phase transition."

A topological quantum phase transition was recently experimentally observed in bismuth thallium sulfide selenide, a compound with an 'inversion symmetric' —a structure that looks the same when reflected with respect to a point. The model put forward by Nagaosa and his colleagues goes beyond such materials by understanding in 'noncentrosymmetric' materials, which do not exhibit this simplifying property.

The researchers' sophisticated model predicts that three-dimensional noncentrosymmetric materials can either change directly from a conventional insulator to a topological insulating state, or pass through an intermediate semi-metal state (Fig. 1). Their model provides detailed estimates for the temperature dependence of many of the properties of this semi-metallic phase, and the conditions required for a phase transition, known as quantum critical points. "The unique physical properties of the semi-metallic state that we have identified will provide a useful guideline for experimental proof of a topological phase transition in three-dimensional noncentrosymmetric systems," says Nagaosa.

Explore further: Researchers find qubits based on trapped ions offer a promising scalable platform for quantum computing

More information: Yang, B. et al. Theory of topological quantum phase transitions in 3D noncentrosymmetric systems. Physical Review Letters 110, 086402 (2013). dx.doi.org/10.1103/PhysRevLett.110.086402

Related Stories

Unfazed by imperfections

Jul 08, 2011

While insulating against electrical currents in their interior, the surface of materials called topological insulators permits the flow of electron spins relatively unhindered. The almost lossless flow ...

First discovery of a natural topological insulator

Mar 06, 2013

(Phys.org) —In a step toward understanding and exploiting an exotic form of matter that has been sparking excitement for potential applications in a new genre of supercomputers, scientists are reporting ...

Engineers show feasibility of superfast materials

Feb 13, 2013

(Phys.org)—University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their edges, but act as an insulator inside. These materials, called ...

Recommended for you

New largest number factored on a quantum device is 56,153

4 hours ago

(Phys.org)—Researchers have set a new record for the quantum factorization of the largest number to date, 56,153, smashing the previous record of 143 that was set in 2012. They have shown that the exact same room-t ...

Scientists film magnetic memory in super slow-motion

7 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (4) May 10, 2013
A topological quantum phase transition was recently experimentally observed in bismuth thallium sulfide selenide, a compound with an 'inversion symmetric' atomic arrangement—a structure that looks the same when reflected with respect to a point. The model put forward by Nagaosa and his colleagues goes beyond such materials by understanding phase transitions in 'noncentrosymmetric' materials, which do not exhibit this simplifying property.
....

Maybe understanding the basic mechanism of quantum mechanics as below, could help to speed up the research…
http://www.vacuum...19〈=en
brt
3.7 / 5 (3) May 13, 2013
please go jump off a bridge.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.