Perfectly doped quantum dots yield colors to dye for

May 10, 2013 by Jeanne Galatzer-Levy
Quantum Dots doped with copper.

(Phys.org) —Quantum dots are tiny nanocrystals with extraordinary optical and electrical properties with possible uses in dye production, bioimaging, and solar energy production. Researchers at the University of Illinois at Chicago have developed a way to introduce precisely four copper ions into each and every quantum dot.

The introduction of these "guest" ions, called doping, opens up possibilities for fine-tuning the optical properties of the and producing spectacular colors.

"When the is perfect, the quantum dots do something that no one expected—they become very emissive and end up being the world's best dye," says Preston Snee, assistant professor of chemistry at UIC and principal investigator on the study.

The results are reported in the journal ACS Nano, available online in advance of print publication. Incorporating guest ions into the can be very challenging, says UIC graduate student Ali Jawaid, first author of the paper.

Controlling the number of ions in each quantum dot is tricky. Merely targeting an average number of guest ions will not produce quantum dots with optimal electrical and optical properties.

Jawaid developed a procedure that reliably produces perfect quantum dots, each doped with exactly four . Snee believes the method will enable them to substitute other guest ions with the same consistent results.

"This opens up the opportunity to study a wide array of doped quantum dot systems," he said.

Donald Wink and Leah Page of UIC and Soma Chattopadhyay of Argonne National Laboratory also contributed to the study.

Explore further: Thinnest feasible nano-membrane produced

Related Stories

Team demonstrates quantum dots that assemble themselves

Apr 16, 2013

(Phys.org) —Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough ...

Researchers demonstrate quantum dots that assemble themselves

Feb 11, 2013

(Phys.org)—Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories