Perfectly doped quantum dots yield colors to dye for

May 10, 2013 by Jeanne Galatzer-Levy
Quantum Dots doped with copper.

(Phys.org) —Quantum dots are tiny nanocrystals with extraordinary optical and electrical properties with possible uses in dye production, bioimaging, and solar energy production. Researchers at the University of Illinois at Chicago have developed a way to introduce precisely four copper ions into each and every quantum dot.

The introduction of these "guest" ions, called doping, opens up possibilities for fine-tuning the optical properties of the and producing spectacular colors.

"When the is perfect, the quantum dots do something that no one expected—they become very emissive and end up being the world's best dye," says Preston Snee, assistant professor of chemistry at UIC and principal investigator on the study.

The results are reported in the journal ACS Nano, available online in advance of print publication. Incorporating guest ions into the can be very challenging, says UIC graduate student Ali Jawaid, first author of the paper.

Controlling the number of ions in each quantum dot is tricky. Merely targeting an average number of guest ions will not produce quantum dots with optimal electrical and optical properties.

Jawaid developed a procedure that reliably produces perfect quantum dots, each doped with exactly four . Snee believes the method will enable them to substitute other guest ions with the same consistent results.

"This opens up the opportunity to study a wide array of doped quantum dot systems," he said.

Donald Wink and Leah Page of UIC and Soma Chattopadhyay of Argonne National Laboratory also contributed to the study.

Explore further: Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure

Related Stories

Researchers demonstrate quantum dots that assemble themselves

February 11, 2013

(Phys.org)—Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough ...

Team demonstrates quantum dots that assemble themselves

April 16, 2013

(Phys.org) —Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.