Optimal stem cell reprogramming through sequential protocols

May 28, 2013 by John Hewitt report
Stem Cell Induction. Credit: stemcellschool.org

(Phys.org) —Gaining control of the ability of mature tissues to generate stem cells is the central medical challenge of our day. From taming cancer, to providing compatible cell banks for replacement organs, knowledge of how cells interconvert between stable points on the complex cellulo-genetic landscape will deliver to the doctor the same mastery the programmer now holds over bits. While researchers often speak of "reprogramming" cells, most recipes today consist only of a crude and partial ingredient list, with little consideration of sequence, quantity or prior state. We recently took stock of the latest in stem cell technology and reviewed the four major factors used to revert adult cells back into omnipotent progenitors. We also just reported on further attempts to rigorously define appropriate level of factors to supply. Researchers from China have now reported that stem cell generation can be regulated by the precise temporal expression of these factors. Publishing in the journal Nature Cell Biology, they show that the efficiency and yield of stem cells can be optimized by controlling the sequencing of the transforming factors, and furthermore provide a theoretical exploration of the possible mechanisms going on behind the scenes.

Back in 2006, researchers in Japan were able to effectively generate stem from without the need for oocytes (eggs) or other . By expressing the four transcription factors, Oct4, Sox2, KLF4 and c-Myc, they could generate cells that, at least in theory, could turn into any other kind of cell. Unfortunately, not only the overall yield of viable stem cells was low, the "rejuvenated" cells that were able to be extracted were generally unsuitable for subsequent patient treatment. The problem is that even when transplanting obtained from a person's own skin, or still occurred. This disharmony results from the fact that the immune system, while trained over a lifetime, can be confused by the "dissonance" in expression of youthful protein isoforms, particularly when encountered astride those of more .

By inducing the expression of all four transformation factors at different times, the Chinese researchers eventually hit upon the optimal sequence. In a nutshell, introducing a combination of Oct4 and Klf4 first, followed later by c-Myc, and then finally Sox2, the maximal yield could be obtained. They were surprised to find that this sequential protocol activated an epithelial-to-mesenchymal (EMT) transition, which was then followed by a delayed reverse (MET) transition. It had been known for some time that in mouse fibroblasts, reprogramming to the pluripotent stem cell state begins by going through a MET conversion. Therefore finding upregulation of the proteins SLUG and N-cadherin, factors generally associated with an EMT, was not anticipated.

In embryogenesis, cells interconvert between epithelial and mesenchymal phenotypes as they lay out the basic body plan. In the epithelial state, cells possess inherent polarity and show preferential adhesion, while in the mesenchymal state, these properties are lost as cells becomes migratory and invasive. This game of run-the bases is recapitulated as more option-constrained cells later rough out the critical form of each organ. Each time cells alights in either camp, they express part of an overlapping subset of various state indicators, but their genetic arrangements are never quite the same.

The authors looked at a few additional factors that might help explain the appearance of a brief mesenchymal state in the sequential procedure. By applying TGF-beta to the simultaneous factor expression protocol early on, they were able to mimic the appearance of the mesenchymal state. This was found to be accompanied by an enhancement in the reprogramming yield, but the effect disappeared when the TGF-beta was applied using a 12-day treatment protocol.

TGF-beta is a whole new can of worms since it is expressed by many cells and does many things, even opposite things in different cells. It is traditionally termed a cytokine, although the distinction between that and a hormone is becoming increasingly blurred. Generally hormones are active at nanomolar concentrations in the blood and vary by less than an order of magnitude. Cytokines by contrast often circulate at less than picomolar concentration and ramp up 1000-fold when called upon during injury or infection.

Capturing the essential behavior of the thousands of downstream regulators or even just four , is just not realistic with a flowchart or state diagram. Beyond a certain level of complexity, if the transition probabilities are too low, or the branch points and exceptions too numerous, new constraints are needed before any sensible algorithmic description might be attempted.

In the absence of any such obvious constraints, the authors hypothesized that while multiple pathways exist for conversion between epithelial-mesenchymal states, some are shorter or easier to access than others. They believe that their sequential recipe tips the balance towards a brief mesenchymal state which ultimately leads to a better stem cell yield.

Explore further: Researchers find animals killed by anthrax leave behind enticing grasses for herbivores, allowing disease to spread

More information: Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming, Nature Cell Biology (2013) doi:10.1038/ncb2765

Abstract
Present practices for reprogramming somatic cells to induced pluripotent stem cells involve simultaneous introduction of reprogramming factors. Here we report that a sequential introduction protocol (Oct4–Klf4 first, then c-Myc and finally Sox2) outperforms the simultaneous one. Surprisingly, the sequential protocol activates an early epithelial-to-mesenchymal transition (EMT) as indicated by the upregulation of Slug and N-cadherin followed by a delayed mesenchymal-to-epithelial transition (MET). An early EMT induced by 1.5-day TGF-β treatment enhances reprogramming with the simultaneous protocol, whereas 12-day treatment blocks reprogramming. Consistent results were obtained when the TGF-β antagonist Repsox was applied in the sequential protocol. These results reveal a time-sensitive role of individual factors for optimal reprogramming and a sequential EMT–MET mechanism at the start of reprogramming. Our studies provide a rationale for further optimizing reprogramming, and introduce the concept of a sequential EMT–MET mechanism for cell fate decision that should be investigated further in other systems, both in vitro and in vivo.

Related Stories

Cellular alchemy caught in action

Feb 08, 2013

One of the most critical biological advances in the past decade was the discovery that the introduction of four simple genetic factors can turn a fully mature adult cell back into an embryonic-like state, a process called ...

AMSSM: Autologous stem cells show promise for ACL tears

Apr 20, 2013

(HealthDay)—For patients with partial or complete non-retracted anterior cruciate ligament (ACL) tears, injection of autologous mesenchymal stem cells directly into the ACL sheath may help heal the tear, ...

Mapping a route to stem cell therapies

May 20, 2013

Monash University researchers are shedding light on the complex processes that underpin the creation and differentiation of stem cells, bringing closer the promise of 'miracle' therapies.

Tracking the cell transitions that cause cancer

Mar 06, 2013

Researchers think that for cancer to develop, damaged cells have to undergo certain transitions that cause them to spread, or metastasize. Junior Tristan Bepler, a biology and computer science major, is te ...

Recommended for you

What happens when good genes get lost?

5 hours ago

Scientifically speaking, there is no bad DNA, though we like to blame it for unruly hair, klutziness or poor gardening skills. There is, however, junk DNA.

Plants prepackage beneficial microbes in their seeds

Sep 29, 2014

Plants have a symbiotic relationship with certain bacteria. These 'commensal' bacteria help the pants extract nutrients and defend against invaders – an important step in preventing pathogens from contaminating fruits and ...

User comments : 0