Optics: Statistics light the way

May 22, 2013
Optics: Statistics light the way
Pulses of low-level laser light trigger electrical responses of cells from the retina, which demonstrate these cells’ sensitivity to photon statistics. Credit: Comstock/Thinkstock

Millions of years of evolution have molded our eyes into highly sensitive optical detectors, surpassing even many man-made devices. Now, Leonid Krivitsky and his co-workers at the A*STAR Data Storage Institute and the A*STAR Institute of Medical Biology, Singapore, have shown that the photoreceptor cells found in the retina are even sensitive to the statistical properties of light. This ability could be harnessed in 'bioquantum' interfaces, a novel class of optical devices that use biological systems to detect the quantum nature of light.

Light comprises discrete bundles of energy known as photons. A 40-Watt light bulb, for example, creates more than 1019 (a one followed by 19 zeros) visible photons every second. Nevertheless, attenuated sources that generate light pulses containing just a few photons are also useful. In such ultralow-intensity light pulses, the of photons emitted in a single pulse depends on the light source.

Warm light sources such as light-bulb filaments generate photons in bunches. Lasers, in contrast, create photons randomly—each is emitted independently of the next. Krivitsky and his co-workers experimentally demonstrated that rod in the eye can distinguish between pulses of light from either a laser or a thermal light based only on these differing distributions. "Showing that such cells can assess photon statistics provides hope for accessing the of light using biodetectors," says Krivitsky.

Krivitsky and his team trapped a photoreceptor cell from a frog on the end of a suction pipette. Then they fired green-light laser pulses at the cell through an optical fiber. The same device could also imitate a thermal light source when they placed a rotating disk of ground glass and an aperture into the beam path.

They observed that rhodopsin molecules in the cell absorbed the incoming photons, which generated an ion current. The researchers amplified and measured this current as the average number of photons in each light pulse increased. They noticed a much sharper increase in detected current for the laser light than the pseudothermal pulses. This is because, while the average photon number is the same, an individual pseudothermal pulse was more likely to have a low number of photons. The photon distribution of the laser pulses, on the other hand, was much narrower.

The two types of photon emitters investigated in these experiments are examples of 'classical' light sources. "The next step is to investigate quantum light, such as pulses with a fixed number of photons," notes Krivitsky.

Explore further: Researchers find retinal rods able to detect photon number distribution

More information: Sim, N., Cheng, M. F., Bessarab, D., Jones, C. M. & Krivitsky, L. A. Measurement of photon statistics with live photoreceptor cells. Physical Review Letters 109, 113601 (2012). dx.doi.org/10.1103/PhysRevLett.109.113601

Related Stories

Switching with a few photons for quantum computing

December 5, 2012

(Phys.org)—Quantum computing, where bits of information, or "qubits," are represented by the state of single atomic particles or photons of light, won't be of much use unless we can read the results. Cornell researchers ...

Quantum optics with microwaves

May 8, 2013

(Phys.org) —Physicists at ETH Zurich have demonstrated one of the quintessential effects of quantum optics—known as the Hong-Ou-Mandel effect—with microwaves, whose frequency is 100'000 times lower than that of visible ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.