Numerical simulations show how to avoid imperfections in next generation of high-density data storage

May 8, 2013
Data storage: Synchronized at the write time
A scanning electron microscope image of a bit-patterned recording medium, with ordered arrays of magnetic islands. Credit: 2013 A*STAR Data Storage Institute

The rise of the internet and the move from paper to digital information has driven a need for large-volume electronic data storage. Maria Yu Lin and her co‐workers at the A*STAR Data Storage Institute, Singapore, have now established some important design principles to consider when developing bit patterned media recording (BPMR)—a potential high-density magnetic recording system of the future.

Conventional hard disk drives store a single data bit in a continuous magnetic medium consisting of many 'grains'. However, the number (approximately 10–15) and the size of these grains (about 6–10 ) naturally limits the maximum density at which digital information can be stored. The BPMR technique offers much higher because it records the data in a regular array of single-grain (see image) that can be much smaller than multiple grain bits in continuous media, according to Lin.

"Multiple grains must be used per data bit in continuous-," she explains. "Ideally, bit-patterned media [will] achieve one grain per bit because the are patterned in isolated and ordered arrays known as 'islands'."

A number of practical hurdles, however, are preventing the use of BPMR in computer hard disks. One problem is that the islands are separated by non-magnetic spaces—some 25–65% of the surface only is magnetic. The data can be passed from the writing `head' only when it is aligned with an island on the spinning disk. Therefore the writing process must be synchronized with the position of the magnetic islands. However, manufacturing defects, variations in disk spinning speed and vibrations can all cause temporal misalignment, which in turn causes writing errors.

Adding information to the disk that tells the writing head its exact position is one way to correctly time the writing process. This includes synchronization sectors and error correction information; however, this information reduces the capacity of the disk for data . Lin and co-workers used computer simulations to theoretically analyze the optimum number of the synchronization sectors. They also analyzed how the additional information would relate to variations in disk spin speed. They investigated the system with read/write spindle motors suffering from high, medium, low and zero speed variation.

"The analysis indicates that the total additional information needed for synchronization and error correction for a motor with a medium rotation variation is 11.75%," says Lin. "Compared to the potential gain in terms of data density that this technology enables, such a total overhead is acceptable."

Explore further: Toshiba makes a breakthrough in hard-drive capacity

More information: Lin, M. et al. Modeling for write synchronization in bit patterned media recording. Journal of Applied Physics 111, 07B918 (2012). dx.doi.org/10.1063/1.3679022

Lin, M. et al. Channel characterization and performance evaluation of bit-patterned media. IEEE Transactions on Magnetics 49, 723–729 (2013). ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6416988

Related Stories

Toshiba makes a breakthrough in hard-drive capacity

August 23, 2010

(PhysOrg.com) -- Last Wednesday Toshiba made an announcement at the Magnetic Recording Conference in San Diego that they have made a breakthrough in their research of bit-patterned media that would result in enormous storage ...

Recommended for you

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.