Novel natural nanomaterial spins off from spider-mite genome sequencing

May 23, 2013
Two females on bean leaf.

(Phys.org) —A new, natural nanomaterial, which may prove incredibly beneficial to medical bioengineers, has been discovered by the research team at Western University that successfully sequenced the spider mite genome in 2011.

Western biology professor Miodrag Grbic and his team have now collaborated with physicist Jeff Hutter to test – for the first-time ever – the durability of spider-mite silk and found the bionanomaterial, which is one thousand times thinner than , to be a potentially superior alternative to , itself long considered a highly attractive light-weight biomaterial due to its high tensile strength and .

The findings were published in Journal of Applied Physics.

"One of the discoveries spinning out from our sequencing of the spider-mite genome was spider-mite silk," explains Grbic, regarding the findings published in Nature in 2011. "When we conceived this project, our idea was to develop tools to control this important world-wide pest but we didn't even dream that we were going to discover a potential bionanomaterial naturally produced by the spider-mite."

Due to the near infinitesimal size of the spider mite silk, traditional theories were irrelevant so Hutter and Steve Hudson from the Department of Physics & Astronomy were forced to rethink conventional methods used for measuring the mechanical properties of nanomaterials.

This video is not supported by your browser at this time.

"Basically you measure the strength of a nanofibre by anchoring it at both ends, suspending it, and then bending it with an atomic force microscope," explains Hutter. "These fibres were so thin that the conventional theory didn't apply and we had to develop a new theory to understand the data."

Hutter and Grbic are most excited that spider mite silk has proven to be a truly natural , making its practical applications numerous.

"Spider silk, which people often talk about, has similar properties but it doesn't score quite as high on Young's modulus," says Hutter, explaining the scientific measure used to characterize stiffness in elastic materials. "Plus silk is way thinner."

Grbic says potential applications would require further research but could include construction of scaffolding for cell growth, as well as tissue regeneration and transplantation.

Explore further: Tiny graphene drum could form future quantum memory

Related Stories

Most stretchable spider silk reported

Feb 08, 2012

The egg sac silk of the cocoon stalk of the cave spider Meta menardi is the most stretchable egg sac silk yet tested, according to a study published Feb. 8 in the open access journal PLoS ONE.

Silkworms spinning spider webs

Jan 03, 2012

(PhysOrg.com) -- A spiders silk is strong and more elastic and has a large range of possible medical applications. However, spiders have a history of being territorial and prone to cannibalism, so the idea ...

A silky spin on protective armor

May 13, 2013

At seven times the toughness of Kevlar, a silk produced by the Caerostris darwini spider of Madagascar is more robust than any other material—synthetic or natural. Most spider silks are about two times ...

Researchers unravel mysteries of spider silk

Jan 27, 2013

(Phys.org)—Scientists at Arizona State University are celebrating their recent success on the path to understanding what makes the fiber that spiders spin – weight for weight - at least five times as ...

Recommended for you

Tiny graphene drum could form future quantum memory

4 hours ago

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

User comments : 0