National study of nanomaterial toxicity sets stage for policies to address health risks

May 6, 2013

For the first time, researchers from institutions around the country have conducted an identical series of toxicology tests evaluating lung-related health impacts associated with widely used engineered nanomaterials (ENMs). The study provides comparable health risk data from multiple labs, which should help regulators develop policies to protect workers and consumers who come into contact with ENMs.

Researchers have done a great deal of toxicological research on ENMs over the past 10 years, but the results have often been difficult to interpret. This is because ENMs from different sources had different chemical and physical properties, and because investigators used different protocols to conduct the experiments.

"The goal of creating this multicenter consortium was to have multiple labs recreate key studies using the same materials and protocols, so that policy-makers have access to consistent, comparable results from multiple institutions," says Dr. James Bonner, an associate professor of environmental and at NC State and lead author of a paper describing the work.

For this study, researchers from eight institutions used mouse and rat models to look at pulmonary health effects related to exposure to titanium dioxide nanoparticles and carbon nanotubes.

The researchers found that carbon nanotubes, which are used in everything from bicycle frames to high performance electronics, produced inflammation and inflammatory lesions in the lower portions of the lung. However, the researchers found that the nanotubes could be made less hazardous if treated to remove excess used in the manufacturing process or modified by adding carboxyl groups to the of the tubes to make them more easily dispersed in .

The researchers also found that nanoparticles also caused inflammation in the lower regions of the lung. Belt-shaped titanium nanoparticles caused more cellular damage in the lungs, and more pronounced lesions, than spherical nanoparticles.

"The findings are significant, but the real take-away message here is that the multicenter consortium concept works – and that means this is a starting point for assessing nanomaterials using this approach," Bonner says. "I'm optimistic that this will serve as a blueprint for similar efforts, which will give regulators comparable data across institutions that will be easier for them to interpret."

Explore further: Where do nanomaterials go in the body?

More information: The paper, "Inter-laboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials," was published May 6 in Environmental Health Perspectives.

Related Stories

Where do nanomaterials go in the body?

November 2, 2009

Tiny, engineered nanomaterials can already be found in many consumer products, and have been hailed as having widespread future uses in areas ranging from medicine to industrial processes. However, little is known about what ...

Titanate cigarette filter could be safer

May 4, 2011

(PhysOrg.com) -- While current cigarettes are made with a filter created from cellulose acetate which absorbs things like nicotine, tar, and polycyclic aromatic hydrocarbons, Chinese researchers have discovered that nanomaterials ...

Carbon black nanoparticles can cause cell death

May 18, 2011

Researchers from the University of Iowa Roy J. and Lucille A. Carver College of Medicine have found that inhaled carbon black nanoparticles create a double source of inflammation in the lungs.

Are silver nanoparticles harmful?

March 14, 2012

Silver nanoparticles cause more damage to testicular cells than titanium dioxide nanoparticles, according to a recent study by the Norwegian Institute of Public Health. However, the use of both types may affect testicular ...

Recommended for you

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.