National study of nanomaterial toxicity sets stage for policies to address health risks

May 06, 2013

For the first time, researchers from institutions around the country have conducted an identical series of toxicology tests evaluating lung-related health impacts associated with widely used engineered nanomaterials (ENMs). The study provides comparable health risk data from multiple labs, which should help regulators develop policies to protect workers and consumers who come into contact with ENMs.

Researchers have done a great deal of toxicological research on ENMs over the past 10 years, but the results have often been difficult to interpret. This is because ENMs from different sources had different chemical and physical properties, and because investigators used different protocols to conduct the experiments.

"The goal of creating this multicenter consortium was to have multiple labs recreate key studies using the same materials and protocols, so that policy-makers have access to consistent, comparable results from multiple institutions," says Dr. James Bonner, an associate professor of environmental and at NC State and lead author of a paper describing the work.

For this study, researchers from eight institutions used mouse and rat models to look at pulmonary health effects related to exposure to titanium dioxide nanoparticles and carbon nanotubes.

The researchers found that carbon nanotubes, which are used in everything from bicycle frames to high performance electronics, produced inflammation and inflammatory lesions in the lower portions of the lung. However, the researchers found that the nanotubes could be made less hazardous if treated to remove excess used in the manufacturing process or modified by adding carboxyl groups to the of the tubes to make them more easily dispersed in .

The researchers also found that nanoparticles also caused inflammation in the lower regions of the lung. Belt-shaped titanium nanoparticles caused more cellular damage in the lungs, and more pronounced lesions, than spherical nanoparticles.

"The findings are significant, but the real take-away message here is that the multicenter consortium concept works – and that means this is a starting point for assessing nanomaterials using this approach," Bonner says. "I'm optimistic that this will serve as a blueprint for similar efforts, which will give regulators comparable data across institutions that will be easier for them to interpret."

Explore further: A new imaging approach for monitoring cell metabolism

More information: The paper, "Inter-laboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials," was published May 6 in Environmental Health Perspectives.

Related Stories

Are silver nanoparticles harmful?

Mar 14, 2012

Silver nanoparticles cause more damage to testicular cells than titanium dioxide nanoparticles, according to a recent study by the Norwegian Institute of Public Health. However, the use of both types may affect testicular ...

Carbon black nanoparticles can cause cell death

May 18, 2011

Researchers from the University of Iowa Roy J. and Lucille A. Carver College of Medicine have found that inhaled carbon black nanoparticles create a double source of inflammation in the lungs.

Titanate cigarette filter could be safer

May 04, 2011

(PhysOrg.com) -- While current cigarettes are made with a filter created from cellulose acetate which absorbs things like nicotine, tar, and polycyclic aromatic hydrocarbons, Chinese researchers have discovered ...

Where do nanomaterials go in the body?

Nov 02, 2009

Tiny, engineered nanomaterials can already be found in many consumer products, and have been hailed as having widespread future uses in areas ranging from medicine to industrial processes. However, little is known about what ...

Recommended for you

Tuning light to kill deep cancer tumors

Oct 15, 2014

An international group of scientists led by Gang Han, PhD, at the University of Massachusetts Medical School, has combined a new type of nanoparticle with an FDA-approved photodynamic therapy to effectively kill deep-set ...

User comments : 0