Nano-engineering boosts efficiency of materials that convert waste heat to electrical energy

May 30, 2013

High-performance thermoelectric materials that convert waste heat to electricity could one day be a source of more sustainable power. But they need to be a lot more efficient before they could be effective on a broad scale in places like power plants or military bases, researchers say.

A University of Michigan researcher has taken a step toward that goal. By engineering a at the level of its individual atoms, Pierre Ferdinand P. Poudeu, assistant professor of and engineering, has boosted its ability to convert heat into power by 200 percent and its by 43 percent. That's an important combination. Improving both of these figures at the same time is a major challenge for researchers working in the field.

The material Poudeu used is an alloy of titanium, zirconium, nickel and tin. While it's not a particularly effective thermoelectric material at this point, Poudeu says it made a good testbed.

"This concept is new and exciting," Poudeu said. "We think it can be adapted to other materials as well and pave the way for improved intended for high-performance energy conversion applications.

"If we want to build generators that convert to electricity and that are capable of replacing current technology, thermoelectric materials with much higher efficiency need to be discovered. We'll have to about double the efficiency typically achieved today."

Poudeu says his nano-engineering approach could achieve those gains if it can be used in current leading candidate thermoelectric materials systems.

His strategy differs from common chemical-based techniques such as doping, in which researchers add impurities to a host material to alter its and make it more conductive. In thermoelectric materials, doping can work against itself, however, because the impurities can hamper the heat-to-.

Rather than add impurities, which are typically foreign chemical elements, Poudeu introduced additional individual atoms of nickel—one of the elements already in the material. The nickel atoms found their way into the crystal structure of the and filled out a small fraction of its vacant atomic sites. They formed what Poudeu describes as quantum dots—nanoscale structures that follow the laws of quantum, rather than classical, physics.

The structures are so small, you'd need to line up a million just to be able to see them without a microscope, Poudeu says.

The quantum dots act as traps, blocking low-energy electrons from reducing the conversion efficiency, while creating a pathway for higher energy electrons to pass through as electric current. The addition of the quantum dots into a bulk semiconductor results in a new material with a distinct electronic structure, Poudeu says.

The paper is titled "Large Enhancements of Thermopower and Carrier Mobility in Quantum Dot Engineered Bulk Semiconductors." It is published online in the Journal of the American Chemical Society and will appear in a forthcoming print edition.

Explore further: A nanosized hydrogen generator

More information: pubs.acs.org/doi/full/10.1021/ja311059m

Related Stories

Energy savings—easy as dirt, heat, pressure

Nov 27, 2012

(Phys.org)—By using common materials found pretty much anywhere there is dirt, a team of Michigan State University researchers have developed a new thermoelectric material.

Fujifilm breaks record with thermoelectric material

Feb 07, 2013

(Phys.org)—Photographic film maker Fujifilm has been busy this year at the Nanotech 2013 conference being held in Tokyo. First came news of bendable/roll up speakers. Now the company is showing off a new thermoelectric ...

Recommended for you

A nanosized hydrogen generator

20 hours ago

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0