Microbial changes regulate function of entire ecosystems

May 31, 2013

A major question in ecology has centered on the role of microbes in regulating ecosystem function. Now, in research published ahead of print in the journal Applied and Environmental Microbiology, Brajesh Singh of the University of Western Sydney, Australia, and collaborators show how changes in the populations of methanotrophic bacteria can have consequences for methane mitigation at ecosystem levels.

"Ecological theories developed for macro-ecology can explain the microbial regulation of the methane cycle," says Singh.

In the study, as grasslands, bogs, and moors became forested, a group of type II methanotrophic bacterium, known as USC alpha, became dominant on all three land use types, replacing other methanotrophic microbes, and oxidizing, thus mitigating methane, a powerful , explains Singh. "The change happened because we changed the niches of the microbial community."

The pre-eminence of USC alpha bacteria in this process demonstrates that the so-called "selection hypothesis" from macro-ecology "explains the changes the investigators saw in the soil functions of their land-use types," says Singh. The selection hypothesis states that a small number of key species, rather than all species present determine key functions in ecosystems. "This knowledge could provide the basis for incorporation of microbial data into predictive models, as has been done for plant communities," he says.

"Evidence of microbial regulation of the provides the basis for including microbial data in studying the effects of global changes," says Singh.

Singh warns that one should not take the results to mean that biodiversity is not important. Without microbial biodiversity, the raw materials—different with different capabilities—for adapting to changes in the environment would be unavailable, he says.

Explore further: Scientists throw light on the mechanism of plants' ticking clock

More information: L. Nazaries, Y. Pan, L. Bodrossy, E.M. Baggs, P. Millard, J.C. Murrell, and B.K. Singh, 2013. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. Published ahead of print 26 April 2013 ,doi:10.1128/AEM.00095-13

add to favorites email to friend print save as pdf

Related Stories

Researchers find microbes accelerate soil carbon loss

Nov 27, 2012

(Phys.org)—New research from scientists at the University of Wyoming and Colorado State University suggests that the loss of carbon from soils in response to climate change could be accelerated by unexpected ...

Small-scale soil studies provide big benefits

Feb 24, 2012

When it comes to studying microbial communities in soil, the smaller the sample, the better. Only by approaching the scale at which microbes interact and function, the micron scale, can scientists understand ...

Recommended for you

Illuminating the dark side of the genome

5 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

User comments : 0