Microbial changes regulate function of entire ecosystems

May 31, 2013

A major question in ecology has centered on the role of microbes in regulating ecosystem function. Now, in research published ahead of print in the journal Applied and Environmental Microbiology, Brajesh Singh of the University of Western Sydney, Australia, and collaborators show how changes in the populations of methanotrophic bacteria can have consequences for methane mitigation at ecosystem levels.

"Ecological theories developed for macro-ecology can explain the microbial regulation of the methane cycle," says Singh.

In the study, as grasslands, bogs, and moors became forested, a group of type II methanotrophic bacterium, known as USC alpha, became dominant on all three land use types, replacing other methanotrophic microbes, and oxidizing, thus mitigating methane, a powerful , explains Singh. "The change happened because we changed the niches of the microbial community."

The pre-eminence of USC alpha bacteria in this process demonstrates that the so-called "selection hypothesis" from macro-ecology "explains the changes the investigators saw in the soil functions of their land-use types," says Singh. The selection hypothesis states that a small number of key species, rather than all species present determine key functions in ecosystems. "This knowledge could provide the basis for incorporation of microbial data into predictive models, as has been done for plant communities," he says.

"Evidence of microbial regulation of the provides the basis for including microbial data in studying the effects of global changes," says Singh.

Singh warns that one should not take the results to mean that biodiversity is not important. Without microbial biodiversity, the raw materials—different with different capabilities—for adapting to changes in the environment would be unavailable, he says.

Explore further: Researchers discover new mechanism of DNA repair

More information: L. Nazaries, Y. Pan, L. Bodrossy, E.M. Baggs, P. Millard, J.C. Murrell, and B.K. Singh, 2013. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. Published ahead of print 26 April 2013 ,doi:10.1128/AEM.00095-13

Related Stories

Researchers find microbes accelerate soil carbon loss

Nov 27, 2012

(Phys.org)—New research from scientists at the University of Wyoming and Colorado State University suggests that the loss of carbon from soils in response to climate change could be accelerated by unexpected ...

Small-scale soil studies provide big benefits

Feb 24, 2012

When it comes to studying microbial communities in soil, the smaller the sample, the better. Only by approaching the scale at which microbes interact and function, the micron scale, can scientists understand ...

Recommended for you

Researchers discover new mechanism of DNA repair

3 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

16 hours ago

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.