Studying meteorites may reveal Mars' secrets of life

May 01, 2013 by Tom Oswald
A team of researchers, including Michigan State University's Michael Velbel, examined a meteorite from Mars, looking for clues that life may have once existed on the red planet. A professor of geological sciences, Velbel is currently serving as a senior fellow at the Smithsonian Institution's National Museum of Natural History. Credit: Cari Corrigan.

In an effort to determine if conditions were ever right on Mars to sustain life, a team of scientists, including a Michigan State University professor, has examined a meteorite that formed on the red planet more than a billion years ago.

And although this team's work is not specifically solving the mystery, it is laying the groundwork for future researchers to answer this age-old question.

The problem, said MSU professor Michael Velbel, is that most meteorites that originated on arrived on so long ago that now they have characteristics that tell of their , obscuring any clues it might offer about their time on Mars.

"These meteorites contain water-related mineral and that can signify habitable conditions," he said. "The trouble is by the time most of these meteorites have been lying around on Earth they pick up signatures that look just like habitable environments, because they are. Earth, obviously, is habitable.

"If we could somehow prove the signature on the meteorite was from before it came to Earth, that would be telling us about Mars."

Specifically, the team found mineral and chemical signatures on the rocks that indicated terrestrial weathering – changes that took place on Earth. The identification of these types of changes will provide valuable clues as scientists continue to examine the meteorites.

"Our contribution is to provide additional depth and a little broader view than some work has done before in sorting out those two kinds of water-related alterations – the ones that happened on Earth and the ones that happened on Mars," Velbel said.

The meteorite that Velbel and his colleagues examined – known as a nakhlite meteorite – was recovered in 2003 in the Miller Range of . About the size of a tennis ball and weighing in at one-and-a-half pounds, the was one of hundreds recovered from that area.

Velbel said past examinations of meteorites that originated on Mars, as well as satellite and Rover data, prove water once existed on Mars, which is the fourth planet from the sun and Earth's nearest Solar System neighbor.

"However," he said, "until a Mars mission successfully returns samples from Mars, mineralogical studies of geochemical processes on Mars will continue to depend heavily on data from meteorites."

Velbel is currently serving as a senior fellow at the Smithsonian Institution's National Museum of Natural History in Washington D.C.

The research is published in Geochimica et Cosmochimica Acta, a bi-weekly journal co-sponsored by two professional societies, the Geochemical Society and the Meteoritical Society.

Explore further: Start of dwarf planet mission delayed after small mix-up

Related Stories

Martian rock from Sahara desert unlike others

Jan 03, 2013

Scientists are abuzz about a coal-colored rock from Mars that landed in the Sahara desert: A yearlong analysis revealed it's quite different from other Martian meteorites. Not only is it older than most, ...

Moroccan desert meteorite delivers Martian secrets

Oct 11, 2012

(Phys.org)—A meteorite that landed in the Moroccan desert 14 months ago is providing more information about Mars, the planet where it originated. University of Alberta researcher Chris Herd helped in the ...

Organic carbon from Mars, but not biological

May 24, 2012

(Phys.org) -- Molecules containing large chains of carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While these molecules ...

Recommended for you

Can sound help us detect 'earthquakes' on Venus?

Apr 23, 2015

Detecting an "earthquake" on Venus would seem to be an impossible task. The planet's surface is a hostile zone of crushing pressure and scorching temperatures—about 874 degrees F, hot enough to melt lead—that ...

Titan's atmosphere useful in study of hazy exoplanets

Apr 23, 2015

With more than a thousand confirmed planets outside of our solar system, astronomers are attempting to identify the atmospheres of these distant bodies to determine if they could possibly host life.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.