Material low-temperature properties can be predicted from its symmetry

May 31, 2013
Figure 1: Spin waves cause the magnetic spins in a ferromagnet to precess around their ordered positions. Credit: 2013 RIKEN Nishina Center for Accelerator-Based Science

A sphere looks the same no matter how it is rotated. Squash it on one side, however, and this symmetry is broken. A similar change from a high-symmetry state to a low-symmetry state defines many phase transitions in solids such as magnetic ordering, superconductivity and crystallization. By solving a long-standing problem in theoretical physics, Yoshimasa Hidaka of the Quantum Hadron Physics Laboratory at the RIKEN Nishina Center for Accelerator-Based Science has now developed a general theory that allows the low-temperature properties of such systems to be predicted from their symmetries.

Physicists use the term 'spontaneous symmetry breaking' to describe a system of particles that chooses a state with a lower symmetry than the physical equations that describe it. The simplest example is a , in which the magnetic spins of electrons lower their energy by lining up with their neighbors. At low enough temperatures, all of the spins point in one direction. Theoretically, the magnet has the same energy whether the spins all point northwest or southeast; in other words, the theory is rotationally symmetric, while the ordered spins are not.

Very little energy is required to disrupt the ordered states that result from spontaneous symmetry breaking. In the magnet, for example, these disturbances correspond to ripples—called spin waves—in which the spins precess around their ordered positions (Fig. 1). Knowing the number of ways these disturbances can occur allows theorists to calculate low-temperature properties such as a material's . In principle, this number depends on how symmetry is broken in a system. "If a general counting rule is known, low-energy or low-temperature behaviors can be predicted," explains Hidaka.

In the 1960s, physicists derived a counting rule for relativistic systems—those in which particles travel at close to the speed of light. This rule, called the Nambu–Goldstone theorem, says that the number of allowed disturbances equals the number of symmetries broken in a phase transition.

Hidaka was interested in finding a more general version of this rule that would apply to non-relativistic systems like solids or liquids—something that theorists have been trying to do for 50 years. He succeeded by adapting a theory used to describe the statistical motion of particles.

"The generalization of the Nambu–Goldstone theorem has been a long-standing problem. This general counting rule is universal," he says. Hidaka believes the new theorem could also be helpful in the study of neutron stars, which have been difficult to model theoretically.

Explore further: Pseudoparticles travel through photoactive material

More information: Hidaka, Y. Counting rule for Nambu-Goldstone modes in nonrelativistic systems. Physical Review Letters 110, 091601 (2013). dx.doi.org/10.1103/PhysRevLett.110.091601

Related Stories

Theorem unifies superfluids and other weird materials

Jun 11, 2012

(Phys.org) -- Matter exhibits weird properties at very cold temperatures. Take superfluids, for example: discovered in 1937, they can flow without resistance forever, spookily climbing the walls of a container ...

The 500 phases of matter: Entering a new phase

Dec 21, 2012

(Phys.org)—Forget solid, liquid, and gas: there are in fact more than 500 phases of matter. In a major paper in today's issue of Science, Perimeter Faculty member Xiao-Gang Wen reveals a modern reclassification of all ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.