Intriguing state of matter previously predicted in graphene-like materials might not exist after all

May 02, 2013
Figure 1: The quantum spin liquid state, predicted to be achievable in two-dimensional hexagonal lattice systems, may not occur in such structures after all. Credit: iStockphoto/Thinkstock

Virtually every material undergoes atomic-level ordering when cooled to temperatures approaching absolute zero. Liquid water, for example, is frozen into atomically ordered crystalline ice. However, condensed matter physicists have theorized that it may be possible to achieve a state called a quantum spin liquid, in which quantum-mechanical effects or the structure of the atomic lattice hinder the development of atomic order while retaining strong electronic interactions. Seiji Yunoki and colleagues from the RIKEN Center for Emergent Matter Science and the RIKEN Advanced Institute for Computational Science have now shown through detailed calculations that achieving the quantum spin liquid state may be more difficult than previously thought.

Recent theoretical studies have indicated that a quantum spin liquid phase could exist in two-dimensional materials where the constituent atoms are arranged in a hexagonal network. A prominent example of such a material is graphene, a single layer of with a structure.

Yunoki and his team modeled the honeycomb by performing a series of quantum using Japan's new 'K computer'—one of the world's top three supercomputers. Monte Carlo-based simulations allow immense and complex physical systems to be calculated at a fraction of the usual by sampling important parts of the system and using statistics to generate predictions. Yet even with such an efficient , it was only the massive computational power of the K computer that made these latest calculations possible.

"The accuracy of the numerical results is largely determined by the system size," explains Yunoki. "The effects we are looking for are small and so we needed large-scale simulations." Yunoki's team was able to model a honeycomb lattice that included as many as 2,592 atomic sites—four times more than in previous studies.

The simulations showed that the spin state in the honeycomb lattice moves directly from a semi-metal phase to an antiferromagnetic-insulator phase, where adjacent spins point in opposite directions. Importantly, whereas the quantum spin liquid state was suggested in previous studies on smaller systems, the researchers found no evidence of an intermediate spin liquid phase in their simulations.

"We believe that a spin liquid phase is an important quantum state of matter, which could have a huge impact on condensed matter physics if we can find a true spin liquid in a realistic quantum system," says Yunoki. "Our next step is to find a spin liquid, and we strongly believe that the power of the K computer will help significantly."

Explore further: A quantum logic gate between light and matter

More information: Sorella, S. Otsuka, Y. and Yunoki, S. Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice. Scientific Reports 2, 992 (2012). dx.doi.org/10.1038/srep00992

Related Stories

Getting to the heart of frustrated magnetism

Jun 29, 2012

Thin films of helium atoms with nuclei of two protons and one neutron—helium-3—intrigue physicists because they have exhibited unusual and unexpected magnetic behavior in experimental investigations. ...

Learning more about phase transitions in small systems

Jun 23, 2011

(PhysOrg.com) -- "People want to understand phase transitions in a finite system by quantum simulation," Luming Duan tells PhysOrg.com. Duan is a professor at the University of Michigan, located in Ann Arbor. "Being able t ...

Recommended for you

CERN: World-record current in a superconductor

16 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hyongx
4 / 5 (1) May 02, 2013
"The accuracy of the numerical results is largely determined by the system size,"


maybe, or
The accuracy of the results is largely determined by assumptions, approximations, and input parameters.

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...