Imaging nanoscale polarization in ferroelectrics with coherent X-rays

May 07, 2013
Imaging nanoscale polarization in ferroelectrics with coherent X-rays
Stripe domain polarization map from X-ray Bragg projection ptychography phase reconstruction of a PbTiO3 thin film.

Seeing the fine-scale properties of materials relevant to nanotechnology is a prominent challenge that currently can be met only under ideal conditions. Coherent X-ray imaging promises to greatly expand the range of materials and environments in which these important properties can be observed. Users from Argonne's Materials Science and Nanoscience & Technology divisions, in collaboration with the X-Ray Microscopy Group at the Center for Nanoscale Materials and researchers from the Advanced Photon Source, KAIST, Northern Illinois University, and the University of Melbourne, have reported the development of a new X-ray imaging technique, coherent X-ray Bragg projection ptychography, and its application to the study of nanoscale structures in ferroelectric thin films.

Under certain conditions, ferroelectric thin films (used, for example, in specialized computer memories) form networks of nanoscale domains with distinct local polarizations that are difficult to image because their properties are controlled by the film's surrounding environment. Noninvasive visualization of these polar domains under realistic boundary conditions is key to the continued development of ferroelectric devices.

The Bragg ptychography method employs a highly penetrating nanofocused X-ray beam to create spatially overlapping coherent diffraction , which, in this study, were used to visualize nanoscale domain polarization in an epitaxially strained ferroelectric thin film of PbTiO3. With a demonstrated spatial resolution of less than six nanometers, this new quantitative imaging technique paves the way for the visualization of domain morphology and behavior inside ferroelectric heterostructures under relevant conditions.

Explore further: Study reveals new characteristics of complex oxide surfaces

More information: S. O. Hruszkewycz et al., Phys. Rev. Lett., 110, 177601 (2013).

add to favorites email to friend print save as pdf

Related Stories

Structural consequences of nanolithography

Aug 11, 2011

(PhysOrg.com) -- Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the ...

Reverse Chemical Switching of a Ferroelectric Film

Feb 25, 2009

(PhysOrg.com) -- Ferroelectric materials display a spontaneous electric polarization below the Curie temperature that can be reoriented, typically by applying an electric field. In this study, researchers ...

Small and stable ferroelectric domains

Mar 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

Recommended for you

A crystal wedding in the nanocosmos

Jul 23, 2014

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 0