Study IDs benefits, potential environmental/health impacts of li-ion batteries for electric vehicles

May 29, 2013

Lithium (Li-ion) batteries used to power plug-in hybrid and electric vehicles show overall promise to "fuel" these vehicles and reduce greenhouse gas emissions, but there are areas for improvement to reduce possible environmental and public health impacts, according to a "cradle to grave" study of advanced Li-ion batteries recently completed by Abt Associates for the U.S. Environmental Protection Agency (EPA).

"While Li-ion batteries for are definitely a step in the right direction from traditional gasoline-fueled vehicles and nickel metal-hydride automotive batteries, some of the materials and methods used to manufacture them could be improved," said Jay Smith, an Abt senior analyst and co-lead of the life-cycle assessment.

Smith said, for example, the study showed that the batteries that use cathodes with nickel and cobalt, as well as solvent-based electrode processing, show the highest potential for certain environmental and human health impacts. The environmental impacts, Smith explained, include resource depletion, global warming, and ecological toxicity—primarily resulting from the production, processing and use of cobalt and nickel , which can cause adverse respiratory, pulmonary and in those exposed.

There are viable ways to reduce these impacts, he said, including substitution, solvent-less electrode processing and recycling of metals from the batteries.

The study, carried out through a partnership with EPA, the U.S. Department of Energy, the industry, and academicians, was the first life-cycle assessment to bring together and use data directly provided by Li-ion battery suppliers, manufacturers, and recyclers. Its purpose was to identify the materials or processes within a Li-ion battery's life cycle that most contribute to impacts on public health and the environment, so that could use this information to improve the environmental profile of their products, while the technology is still emerging. It also sought to evaluate the potential impacts of a nanotechnology innovation (i.e., a carbon nanotube anode) that could improve battery performance.

Among other findings, Shanika Amarakoon, an Abt associate who co-led the life-cycle assessment with Smith, said global warming and other environmental and health impacts were shown to be influenced by the electricity grids used to charge the batteries when driving the vehicles.

"These impacts are sensitive to local and regional grid mixes," Amarakoon said. "If the batteries in use are drawing power from the grids in the Midwest or South, much of the electricity will be coming from coal-fired plants. If it's in New England or California, the grids rely more on renewables and natural gas, which emit less greenhouse gases and other toxic pollutants." However," she added, "impacts from the processing and manufacture of these batteries should not be overlooked."

In terms of performance, Smith said that "the nanotechnology applications that Abt assessed were single-walled carbon nanotubes (SWCNTs), which are currently being researched for use as anodes as they show promise for improving the energy density and ultimate performance of the Li-ion batteries in vehicles. What we found, however, is that the energy needed to produce the SWCNT anodes in these early stages of development is prohibitive. Over time, if researchers focus on reducing the energy intensity of the manufacturing process before commercialization, the environmental profile of the technology has the potential to improve dramatically."

The life-cycle assessment results and methodology are described in detail in the EPA/Abt report, "Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles."

Explore further: Researchers find way to turn sawdust into gasoline

More information: www.epa.gov/dfe/pubs/projects/… ttery-lca-report.pdf

add to favorites email to friend print save as pdf

Related Stories

Batteries for the future

Apr 22, 2011

One of the most important decisions facing designers of plug-in electric or hybrid vehicles is related to battery choice. Now, researchers at the Norwegian University of Science and Technology (NTNU) have used a life cycle ...

Building a better battery

Mar 11, 2013

A new battery technology provides double the energy storage at lower cost than the batteries that are used in handheld electronics, electric vehicles, aerospace and defence.

Recommended for you

Are electric cars greener? Depends on where you live

15 hours ago

Long thought a thing of the future, electric cars are becoming mainstream. Sales in the United States of plug-in, electric vehicles nearly doubled last year. Credible forecasts see the number rising within ...

Building a better battery

17 hours ago

Imagine an electric car with the range of a Tesla Model S - 265 miles - but at one-fifth the $70,000 price of the luxury sedan. Or a battery able to provide many times more energy than today's technology ...

Researchers find way to turn sawdust into gasoline

21 hours ago

Researchers at KU Leuven's Centre for Surface Chemistry and Catalysis have successfully converted sawdust into building blocks for gasoline. Using a new chemical process, they were able to convert the cellulose ...

Nanodot team aims to charge phones in less than a minute

Nov 25, 2014

The world of smartphone users, which is a very large base indeed, is ripe for better battery solutions and an Israel-based company has an attractive solution in store, in the form of nanodot batteries that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.