Geologic study suggests Earth's tectonic activity peaked 1.1 billion years ago

May 08, 2013 by Bob Yirka report
Earth

(Phys.org) —A pair of Australian researchers studying rock samples has found evidence to suggest that the Earth's tectonic plate activity peaked approximately 1.1 billion years ago. In their paper published in the journal Geology, Martin Van Kranendonk and Christopher Kirkland describe the results of their analysis of a multitude of rock samples from various sites around the world.

Scientists agree that the Earth's tectonic plates have been shifting for at least 3 billion years, but no one really knows whether such shifting has been getting more or less active. In this new effort Kranendonk and Kirkland undertook an exhaustive study of rock samples to learn more.

The two first looked at 3200 samples of rocks collected by various researchers over the years, taken from various points around the world. Specifically, they were looking for the amount of zirconium and in them—both have been found to be more common in rocks that were formed during tectonically active periods. Next they looked at an additional 1200 , this time looking for , which are also known to be more common in rocks created during times of high .

In analyzing the data obtained from studying the rocks, the researchers found evidence that suggests that tectonic activity increased from a time approximately 3 billion years ago. That activity continued to increase, they say, for 2 billion years, peaking around 1.1 billion years ago—a time during which all of the continents had merged into one called Rodinia. Since that time, they note, it appears that tectonic activity has been slowing. This suggests that the planet has a lifespan.

The rocks can't offer any evidence to explain why there was an increase in activity or why it has been slowing after peaking, but the researchers have a theory—they believe that prior to the increase in tectonic activity, the world over became thicker, and likely larger. This meant collisions between plates would have been far more violent than before. As the Earth cooled off, the plates would have moved slower causing less activity overall. These new findings also suggest that at some point the Earth's plates will stop moving altogether—though how long that might take is still a mystery.

Explore further: Old photos shed light on the Antarctic

More information: Orogenic climax of Earth: The 1.2–1.1 Ga Grenvillian superevent, Geology, First published online April 29, 2013, doi: 10.1130/G34243.1

Abstract
The rate of growth of the continental crust is controversial. We present an evaluation of time-constrained analyses of oxygen isotopes in zircon grains and incompatible element (Zr, Th) concentrations in magmatic rocks to test for variations in the degree of crustal recycling through geological time. The data indicate a rise in these geochemical proxies from ca. 3.0 Ga to a statistically significant peak at 1.2–1.1 Ga during the amalgamation of supercontinent Rodinia, and a decrease thereafter. When combined with other geological and geophysical observations, the data are interpreted as a consequence of an unprecedented level of crustal recycling and sediment subduction during Rodinia assembly, arising from a "Goldilocks" (i.e., just right) combination of larger, thicker plates on a warmer Earth with more rapid continental drift relative to modern Earth. The subsequent decrease in δ18O, Zr, and Th measurements is interpreted to reflect decreasing drift rates on a cooling Earth.

via Newscientist

Related Stories

Studying ancient Earth's geochemistry

Jan 18, 2013

Researchers still have much to learn about the volcanism that shaped our planet's early history. New evidence from a team led by Carnegie's Frances Jenner demonstrates that some of the tectonic processes driving volcanic ...

Plate tectonics may take a break

Jan 03, 2008

Plate tectonics, the geologic process responsible for creating the Earth’s continents, mountain ranges, and ocean basins, may be an on-again, off-again affair. Scientists have assumed that the shifting of crustal plates ...

Zircon crystals reveal onset of plate tectonics

May 31, 2012

(Phys.org) -- We're familiar with the theory that the Earth's crust is composed of tectonic plates that move, sometimes dramatically to create earthquakes and tsunamis - but until recently, nobody knew how ...

Recommended for you

Strong quake hits east Indonesia; no tsunami threat

22 hours ago

A strong earthquake struck off the coast of eastern Indonesia on Sunday evening, but there were no immediate reports of injuries or damage, and authorities said there was no threat of a tsunami.

Scientists make strides in tsunami warning since 2004

Dec 19, 2014

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

Dec 19, 2014

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.