Genes define the interaction of social amoeba and bacteria

May 9, 2013
Amoeba Proteus, an animal consisting of a single naked cell, x 280 (From Sedgwick and Wilson's Biology.) Image: Wikimedia Commons

Amoeba eat bacteria and other human pathogens, engulfing and destroying them – or being destroyed by them, but how these single-cell organisms distinguish and respond successfully to different bacterial classes has been largely unexplained.

In a report in the journal Current Biology, researchers from Baylor College of Medicine use the model of the social amoeba – Dictyostelium discoideum – to identify the genetic controls on how the amoeba differentiate the different and respond to achieve their goal of destruction.

"No one has looked at the basic question of what happens when you put the two classes of species together," said Dr. Adam Kuspa, professor in the department of biochemistry & molecular biology and senior vice president for research at BCM. "What does the amoeba do?"

The scientists, who included first author graduate student Waleed Nasser, did a genetic screen called a transcriptional profile, that identified sets of genes are active or expressed when interacting with two major classes of bacteria—gram negative and gram positive.

"The two kinds of bacteria are different in structure and biochemistry," said Kuspa, who is the corresponding author of the report. "We found that the Dictyostelium did differentiate between the different bacteria. In fact, it was shocking that nearly 800 different genes were activated when exposed to a kind of gram negative bacteria known as enterobacteria (Klebsiella)."

The researchers found 50 amoebal genes that were activated during growth on gram negative species of bacteria and 68 that were activated on gram positive species. The genes identified as active on gram positive bacteria were those most commonly defined as involved in metabolism. Those active on gram negative bacteria were most likely involved in degrading the cell wall, in particular one gene called alyL, which encodes an amoeba protein which likely acts as a lysozyme, an enzyme that breaks down bacterial cell walls. They also identified glucose-6-phosphate or a metabolite of it as signaling the presence of gram positive bacteria.

From that, said Kuspa, the question arises of whether this "barometer" of the presence of gram positive bacteria in the social amoeba might be conserved across evolution in humans.

"Might it be conserved in us?" he asked.

When the genome of the social amoeba was sequenced, Kuspa, colleague Dr. Gad Shaulsky, professor of molecular and human genetics at BCM, and others found that all amoeba are related. That means that what affects one kind of amoeba probably affects another.

"The second thing was that we found amoebae are more closely related to us than we thought," said Kuspa. Many of the proteins found in amoeba are conserved in mammals.

"We hope that what we learn from amoebae might be relevant to human immune systems," he said.

Others who took part in this work include Shaulsky, Balaji Santhanam, Edward Roshan Miranda, Anup Parikh Chris Dinh, Rui Chen and Blaz Zupan, all of BCM; and Kavina Juneja of Rice University and Gregor Rot of the University of Ljubljana in Slovenia. Zupan is also of the University of Ljubljana.

Explore further: Self or non-self: Social amoeba rely on genetic 'lock and key' to identify kin

Related Stories

Magnetizing diagnostics: Magnetic Gram staining detects bacteria

July 13, 2012

( -- Gram staining of bacteria is a routine diagnostic method of long standing that can be used for initial diagnoses and to simplify the choice of antibiotics. It is a simple way to classify bacteria into two classes—Gram-positive ...

Amoeba feast on backpacks

October 22, 2012

(—The amoeba Acanthamoeba cunningly traps motile bacteria, collecting them in a rucksack before devouring the whole backpack. This behaviour of the single-cell organisms is unique.

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.