Researchers gain insight into key protein linked to cancers, neurodegenerative disorders

May 30, 2013

Virginia Commonwealth University researchers studying a key molecular player called Hsp70 that is responsible for protein homeostasis have uncovered how it binds together with another molecule responsible for intracellular energy transfer to enhance its overall activity and efficiency – details that have previously not been well understood.

, particularly the 70-kilodalton heat shock proteins, , are important for such as protein folding and protecting cells from stress. It is also involved with , degradation and transport. Imbalances in protein have been previously found to contribute to the onset of and cancers.

In the study, published this week in the Online First section of Nature Structural & Molecular Biology, a publication of the Nature journal family, researchers conducted a biochemical analysis of the structure to learn how ATP binding allosterically opens the polypeptide-binding site. In order for Hsp70 to do its job of regulating its binding to unfolded polypeptide substrates, it gains energy from the process of ATP hydrolysis. ATP is a molecule responsible for intracellular .

The team found that when Hsp70 binds ATP it promotes the allosteric opening of the polypeptide binding site.

"Due to their essential roles in protein trafficking and proper folding since mis-folded proteins can disrupt cell function, Hsp70s are inextricably linked to the development of cancers, aging and neurodegenerative disorders," said Qinglian Liu, Ph.D., assistant professor in the Department of Physiology and Biophysics in the VCU School of Medicine.

"Understanding the structural properties at the atomic level and molecular working of Hsp70s will pave the foundation for designing efficient and potent small molecule drugs to specifically modulate the function of Hsp70s. The small molecule drugs may become novel and efficient treatments for cancers or neurodegenerative disorders," she said.

Liu said that the team's structural and biochemical analysis revealed how Hsp70s use ATP to open their peptide substrate binding site and thus regulate their ability in binding peptide substrates.

"These findings help us understand at the atomic level how Hsp70s function in maintaining the well-being of cellular proteins, such as folding, assembly, transport and degradation," said Liu.

According to Liu, future work will move the team in two directions. First, based on this published work, they aim to design specific and potent modulators for Hsp70s and test their potential in treating cancers or neurodegenerative disorders. A second focus will be to study how Hsp70s cooperate with their Hsp40 partners to achieve their optimum activity in maintaining protein homeostasis.

VCU collaborated with Brookhaven National Laboratory, the Department of Biochemistry and Molecular Biophysics at Columbia University in New York. All the work was conducted at VCU, with the exception of the X-ray diffraction data collection and analysis, which was done at Brookhaven's National Synchrotron Light Source.

Explore further: Brand new technology detects probiotic organisms in food

More information: The study is titled "Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP.

Related Stories

Biochemists trap a chaperone machine in action

Dec 06, 2012

Molecular chaperones have emerged as exciting new potential drug targets, because scientists want to learn how to stop cancer cells, for example, from using chaperones to enable their uncontrolled growth. ...

Researchers seek to treat protein-based diseases

Apr 30, 2013

Scientists at the University of Essex have made a further step towards the potential future development of medicines to help combat a range of diseases currently considered "undruggable".

Protein study suggests drug side effects are inevitable

May 20, 2013

A new study of both computer-created and natural proteins suggests that the number of unique pockets – sites where small molecule pharmaceutical compounds can bind to proteins – is surprisingly small, meaning drug side ...

New structural insight into neurodegenerative disease

Mar 14, 2013

A research team from the Korea Advanced Institute of Science and Technology (KAIST) released their results on the structure and molecular details of the neurodegenerative disease-associated protein Ataxin-1. ...

Scientists gain new insights into protein disposal

May 28, 2013

Cells have a sophisticated system to control and dispose of defective, superfluous proteins and thus to prevent damage to the body. Dr. Katrin Bagola and Professor Thomas Sommer of the Max Delbrück Center for Molecular Medicine ...

Recommended for you

Fighting bacteria—with viruses

9 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

10 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0