Flight behaviour of hungry malaria mosquitoes analysed

May 06, 2013
Flight behaviour of hungry malaria mosquitoes analysed

Malaria mosquitoes go to work cautiously before landing on human skin and biting. Just before a mosquito lands, it reacts to both odours and heat given off by the human body. Researchers at Wageningen University came to this conclusion after studying images made with infrared-sensitive cameras. Their research was published in the scientific journal PLOS ONE on 2 May.

Most prefer . They fly in the dark while their host is sleeping. In order to locate a host, they focus on traces of carbon dioxide, released by all animals, and on characteristic human odours. At a distance of 1.5 m from their host, they mainly follow body odours. Just before they land, however, heat radiating from the human body also plays a significant role.

The researchers and technicians at Wageningen University, which is part of Wageningen UR, worked with colleagues from Noldus Information Technology BV using video recordings and automated 3D image analyses to clarify how malaria find their host.

In order to investigate seeking behaviour in mosquitoes, the researchers placed the insects in a special dark wind tunnel measuring 60 by 60 cm, with a length of 1.6 m. The air stream had a constant temperature and humidity, and a speed of 20 cm/second. The flight of each mosquito () in the tunnel was filmed by means of infrared-sensitive cameras.

Wind tunnel with the flight route of a malaria mosquito. On the left, without odour source; on the right, with source of odour and heat. The air stream in the tunnel goes from right to left. The mosquito starts at the left-hand side and flies against the air stream. If no odours are present, the mosquito lands on the right-hand wall after only a few seconds. When odour and heat are present the mosquito takes a longer (on average, four times longer) and more complex route to the odour source, and then proceeds to land.

When human odours were absent, the mosquitoes continued to fly into the wind through the tunnel. As soon as the researchers added an odour to the air stream, the mosquitoes followed a complex and long route to the source, and this took about twice as long as without odours. Adding a (34┬░C, the same as ) again doubled the length of the search and was crucial for finding the odour source. Adding heat caused the to change drastically whenever mosquitoes came near (about 20 cm) to the source. The exact mechanism of landing will be the subject of a future investigation.

This research at Wageningen demonstrates that the interaction of odour and heat is effective in bringing mosquitoes to a host. This is the first study to make malaria mosquito flight behaviour 'visible' in the dark and it demonstrates that insects are extremely good at orientating themselves towards their host at night. This discovery means that existing odour traps can be enhanced by, for example, adding a source of heat, or by changing the position of the bait in relation to the trap opening. This is one of the ways of controlling malaria, still a serious disease affecting millions of people in large parts of the world. The new information on transmission by the malaria mosquito can be used to combat the disease more effectively.

Explore further: How plant cell compartments change with cell growth

More information: Spitzen, J. et al. A 3D analysis of flight behavior of Anophelels gambiae sensu stricto malaria mosquitoes in response to human odor and heat, PLOS ONE, 2 May 2013.

add to favorites email to friend print save as pdf

Related Stories

Malaria mosquitoes accurately find their way to smelly feet

May 09, 2011

Malaria mosquitoes utilise CO2 from exhaled air to localize humans from afar. In the vicinity of their preferred host they alter their course towards the human feet. Researcher Remco Suer discovered how female malaria mo ...

Malaria mosquitoes guided by bacteria

Dec 08, 2010

The composition of our skin bacteria determines whether we are attractive to malaria mosquito. This insight should make it possible to develop an effective odor trap for mosquitoes.

New insecticide created for mosquitoes

Jul 18, 2007

French scientists have developed an effective insecticide-repellent compound that can be used against mosquitoes resistant to current chemicals.

Recommended for you

How plant cell compartments change with cell growth

13 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

13 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

14 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

14 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0