Researchers fine-tune the sensitivity of nano-chemical sensor

May 8, 2013 by Jeanne Galatzer-Levy
Amin Salehi-Khojin, asst professor of mechanical/industrial engineering, and his two postdocs, Poya Yasaei (dark hair sideburns) and Bjandra Kumar (maroon shirt)

Researchers have discovered a technique for controlling the sensitivity of graphene chemical sensors.

The , made of an insulating base coated with a —a single-atom-thick layer of carbon—are already so sensitive that they can detect an individual molecule of gas. But manipulating the chemical properties of the insulating layer, without altering the graphene layer, may yet improve their ability to detect the most minute concentrations of various gases.

The finding "will open up entirely new possibilities for modulation and control of the chemical sensitivity of these sensors, without compromising the intrinsic electrical and structural properties of graphene," says Amin Salehi-Khojin, assistant professor of mechanical and at the University of Illinois at Chicago, and principal investigator on the study. He and his at the UIC College of Engineering collaborated with researchers from the Beckman Institute and the Micro and Nanotechnology Laboratory at the University of Illinois at Urbana-Champaign and two institutions in Korea. Their findings are reported in the journal Nano Letter, available online in advance of publication.

Since its discovery nearly 10 years ago, graphene—in sheets, or rolled into nanotubes—has attracted huge scientific interest. Composed of a single layer of , graphene has potential for use in hundreds of high-tech applications. Its 2-D structure, exposing its entire volume, makes it attractive as a highly sensitive gas detector.

Salehi-Khojin's team, and others, earlier found that graphene depended on a structural flaw around a carbon atom for their sensitivity. They set out to show that "pristine" graphene sensors—made of graphene that was perfectly flawless—wouldn't work. But when they tested these sensors, they found they were still sensitive to trace .

"This was a very surprising result," Salehi-Khojin said.

The researchers tested the sensor layer by layer. They found that pristine graphene is insensitive, as they had predicted.

They next set about removing any flaws, or reactive sites called dangling bonds, from the insulating layer. When a pristine insulating layer was tested with pristine graphene, again there was no sensitivity.

"But when dangling bonds were added back onto the insulating layer, we observed a response," said Bijandra Kumar, a post-doctoral research associate at UIC and first author of the Nano Letter study.

"We could now say that graphene itself is insensitive unless it has defects—internal defects on the graphene surface, or external defects on the substrate surface," said UIC graduate student Poya Yasaei.

The finding opens up a new "design space," Salehi-Khojin said. Controlling external defects in the supporting substrates will allow graphene chemFETs to be engineered that may be useful in a wide variety of applications.

Explore further: Shining light on graphene sensors

Related Stories

Shining light on graphene sensors

January 10, 2011

National Physical Laboratory, together with an international team of scientists, have published research showing how light can be used to control graphene's electrical properties. This advance is an important step towards ...

Imperfections may improve graphene sensors

November 29, 2011

Although they found that graphene makes very good chemical sensors, researchers at the University of Illinois at Urbana-Champaign have discovered an unexpected "twist"—that the sensors are better when the graphene is ...

Flaky graphene makes reliable chemical sensors

January 17, 2012

Scientists from the University of Illinois at Urbana-Champaign and the company Dioxide Materials have demonstrated that randomly stacked graphene flakes can make an effective chemical sensor.

Routes towards defect-free graphene

February 1, 2013

A new way of growing graphene without the defects that weaken it and prevent electrons from flowing freely within it could open the way to large-scale manufacturing of graphene-based devices with applications in fields such ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.