Fast new, one-step genetic engineering technology

May 22, 2013
Fast new, one-step genetic engineering technology
A new, streamlined approach to genetic engineering drastically reduces the time and effort needed to insert new genes into bacteria, the workhorses of biotechnology. Credit: iStockphoto/Thinkstock

A new, streamlined approach to genetic engineering drastically reduces the time and effort needed to insert new genes into bacteria, the workhorses of biotechnology, scientists are reporting. Published in the journal ACS Synthetic Biology, the method paves the way for more rapid development of designer microbes for drug development, environmental cleanup and other activities.

Keith Shearwin and colleagues explain that placing, or integrating, a piece of the genetic material DNA into a bacterium's genome is critical for making designer bacteria. That DNA can give microbes the ability to churn out ingredients for medication, for instance, or substances that break down oil after a big spill. But current methods are time-consuming and involve many steps. The approaches have other limitations as well. To address those drawbacks, the researchers sought to develop a new, one-step genetic engineering technology, which they named "clonetegration," a reference to clones or copies of genes or .

Fast new, one-step genetic engineering technology

They describe development and successful laboratory tests of clonetegration in E. coli and Salmonella typhimurium bacteria, which are used in biotechnology. The method is quick, efficient and easy to do and can integrate multiple genes at the same time. They predict that clonetegration "will become a valuable technique facilitating genetic engineering with difficult-to-clone sequences and rapid construction of synthetic ."

Explore further: Protein study gives fresh impetus in fight against superbugs

More information: "One-Step Cloning and Chromosomal Integration of DNA," ACS Synthetic Biology. DOI: 10.1021/sb400021j

Abstract
We describe "clonetegration", a method for integrating DNA into prokaryotic chromosomes that approaches the simplicity of cloning DNA within extrachromosomal vectors. Compared to existing techniques, clonetegration drastically decreases the time and effort needed for integration of single or multiple DNA fragments. Additionally, clonetegration facilitates cloning and expression of genetic elements that are impossible to propagate within typical multicopy plasmids.

Related Stories

Smaller genome, greater applications

March 26, 2012

Bacteria are often the ideal machines in industry. The inputs they require are cheap substances such as amino acids and sugar, and their outputs are valuable products such as bioplastics.

Predictability: The brass ring for synthetic biology

March 14, 2013

(Phys.org) —Predictability is often used synonymously with "boring," as in that story or that outcome was soooo predictable. For practitioners of synthetic biology seeking to engineer valuable new microbes, however, predictability ...

The first caffeine-'addicted' bacteria

March 27, 2013

Some people may joke about living on caffeine, but scientists now have genetically engineered E. coli bacteria to do that—literally. Their report in the journal ACS Synthetic Biology describes bacteria being "addicted" ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.