Error sought & found: State-of-the-art measurement technique optimised

May 23, 2013
GPS satellites are suitable for climate research if the interaction between the atmosphere and their signals is better understood. Credit: Wegener Center

A systematic error has been eliminated from a measurement technique for analysing the physical properties of the Earth's atmosphere using signals from GPS satellites – thanks to an Austrian Science Fund FWF project. As part of this project, the radio occultation technique, which is based on phase shifts in GPS signals, was systematically tested for error sources. A significant error was found through a day-night comparison of measurement data recorded over a ten-year period. The findings have now been published along with a correction proposal. This will make it possible to attain greater accuracy using this method, which is set to become the future gold standard of sensing techniques used in climate research.

First it worked for Mars, and then for other planets – for the Earth, though, it was longer in coming: radio occultation (RO). This technique provides information about the properties of the atmosphere. It is based on the phase shift of radio signals caused by the fractive index of an atmosphere. Just as water causes the path of light to bend, the atmosphere affects a – the corresponding effect is quantifiable and depends on the properties of the atmosphere. Thanks to numerous GPS satellites, a comprehensive is available for the Earth. However, prior to its optimal use for climate research, rigorous error analysis had to be carried out – and this is precisely what was done at the University of Graz, Austria.

Unknown atmosphere

Project leader Prof. Ulrich Foelsche from the Wegener Center for Climate and Global Change explains the significance of his study: "Although the climate is largely dictated by the free atmosphere, we still do not know enough about its development. RO provides a completely new way of collecting continuous, long-term and highly accurate data on density, pressure, temperature and humidity. However, before it can be optimally used for climate research, there are questions to be answered about the existence of systematic errors. And this is what we are doing."

The scientists recently succeeded in identifying a key influence that affects the measurement data, and can be traced back to . To understand this effect, it is necessary to take into account that orbit at an altitude of 20,000 km. For RO their signals are received by satellites located closer to the Earth – in the process they travel through both the upper, ionised atmosphere and the lower, neutral atmosphere. For , the data from the lower, neutral atmosphere are of greatest relevance. In point of fact however, the signal is already influenced by ionised particles in the upper atmosphere – an effect that must be corrected during the data processing.

Dark side of solar activity

The recently published findings of Prof. Foelsche's group show that this correction is not as simple a matter as was previously assumed. It was known that the signal refraction in the ionised atmosphere is greater during the day than at night. However, the evaluation of ten years' data from two satellite missions (COSMIC, CHAMP) revealed that the extent of the day-night differences varies. The variations are caused by the prevailing solar activity. In phases of higher solar activity, the ionisation in the upper atmosphere increases more during the day than in phases of lower activity – and this has varying effects on the refraction of the radio signal.

Having identified these variations, the Graz-based team developed a formula that will enable the correction of the measurement values to be improved in future – and which has already proven effective in the context of model calculations. In addition to the prevailing solar activity, the formula also takes into account the latitude of the Earth at which the measurement is taken – a factor that also affects the extent of the ionisation.

All in all, with its calculations, this FWF project has carried out urgently necessary groundwork. RO enables the collection of comprehensive volumes of data on the state of the Earth's with hitherto unattained accuracy – for this reason alone, the critical analysis of possible error sources is crucial.

Explore further: NASA sees sun emit mid-level flare

More information: Danzer, J. et al. Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them, Atmos. Meas. Tech. Discuss., 6, 1979 - 2008, 2013.

Related Stories

NASA sees sun emit mid-level flare

May 3, 2013

( —The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically ...

First X-class solar flare of 2013

May 13, 2013

( —On May 12, 2013, the sun emitted a significant solar flare, peaking at 10 p.m. EDT. This flare is classified as an X1.7, making it the first X-class flare of 2013. The flare was also associated with another ...

Solar flares may disrupt GPS systems, researcher says

May 16, 2013

( —If your GPS navigation system goes on the fritz in the coming days, you might have the sun to blame. Early this week, the sun released four X-class solar flares, the strongest type of flare. Forecasters at the ...

Volcanoes cause climate gas concentrations to vary

May 22, 2013

Trace gases and aerosols are major factors influencing the climate. With the help of highly complex installations, such as MIPAS on board of the ENVISAT satellite, researchers try to better understand the processes in the ...

SDO observes mid-level solar flare

May 22, 2013

UPDATE 16:30 p.m. EDT: The M7-class flare was also associated with a coronal mass ejection or CME, another solar phenomenon that can send billions of tons of particles into space. While this CME was not Earth-directed, it ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

SLAC theorist explains quantum gravity

November 19, 2015

Our world is ruled by four fundamental forces: the gravitational pull of massive objects, the electromagnetic interaction between electric charges, the strong nuclear interaction holding atomic nuclei together and the weak ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.