Taking the fight into the enemy's territory

May 29, 2013
Credit: ACS

(Phys.org) —German researchers have developed a scheme for the preparation of nanoparticles that offer a highly versatile system for targeted drug delivery directly into diverse types of tumor cells.

Nanoparticles have dimensions of a few millionths of a millimeter, and are thus small enough to conquer cells. This property opens new opportunities in the fight against cancer, which are currently the subject of intensive research. An LMU team led by Professor Christoph Bräuchle and Professor Thomas Bein has now developed a highly adaptable platform for the production of nanoparticles that can be used as "nanoferries" for the targeted delivery of a range of drug cargoes to various types of cancer cells. The system is described in a paper that has just appeared in the journal Nano Letters.

Above all, the new approach makes it possible to fabricate custom-designed nanoparticles for particular tasks. "The particles can be easily loaded with a variety of chemical agents and equipped with labels recognized by specific cell types. Thus, they bind specifically to certain cancer cells and release their cargo only after uptake by the cell," says Christoph Bräuchle who, like his collaborator Thomas Bein, is a member of the Nanosystems Initiative Munich (NIM), a Cluster of Excellence. The system thus provides a means of transporting anti- directly and specifically into .

The use of such nanoparticles as ensures that their cargo exerts its effect only inside the targeted cells. The compounds used in are often highly toxic to many cell types, so targeting is crucial if one wants to minimize to healthy bystander cells. Efficient targeting thus significantly lowers the risk of serious side-effects, while allowing the dose required for a meaningful to be reduced.

Intelligent freight systems

Intelligent nanoparticles capable of targeted must fulfill a number of criteria. They must have a high capacity for cargo, and they need an envelope that is compatible with biological membranes and can present ligands that bind to specific receptors on target cells. Once the particles have entered the cell, they must be stimulated by some sort of signal to release their chemical cargo. "It is extremely difficult to design a particle that meets all these criteria at once. But we have now developed a system which, in principle, achieves this goal, and provides a generally applicable platform that is compatible with different cargos and target cells," says Thomas Bein.

The system is based on nanoparticles of mesoporous silicon dioxide, which can be safely biodegraded and whose pores offer a large storage volume for cargo. A photosensitizer is attached to the particle surface, and the drug cargo is loaded into the pores. Each particle is then enclosed in a lipid bilayer similar to the plasma membrane of a typical cell. A ligand recognized by receptors found on specific cell is then inserted into the bilayer. In the new work, the team tested ligands specific for either hepatoma or cervical cancer cells. The activation of the photosensitizer with red light leads to a break-up of the lipid envelope and therefore a release of cargo.

"That the photosensitizer responds to red rather than the blue light used in previous experiments, is an important advance. Red light is less toxic to cells and penetrates deeper into tissues," says Veronika Weiss, whose contribution to the study will form part of her doctoral thesis. Her colleague Alexandra Schmidt adds: "Another critical point is that the photosensitizer is bound directly to the drug carrier, so that its effects are localized to the immediate vicinity of the nanoparticle itself, and do not have a destructive impact on larger regions of the cell interior."

The new study represents a further step for a highly successful long-term partnership. In 2010, the same collaboration developed the basic method for triggering the release of cargo from after their uptake by target .

Explore further: Nanotechnology researchers develop new strategy to deliver chemotherapy to prostate cancer cells

More information: pubs.acs.org/doi/abs/10.1021/nl400681f

Related Stories

Nanoparticles that look, act like cells

January 31, 2013

(Phys.org)—By cloaking nanoparticles in the membranes of white blood cells, scientists at The Methodist Hospital Research Institute may have found a way to prevent the body from recognizing and destroying them before they ...

How gold nanoparticles can help fight ovarian cancer

May 21, 2013

Positively charged gold nanoparticles are usually toxic to cells, but cancer cells somehow manage to avoid nanoparticle toxicity. Mayo Clinic researchers found out why, and determined how to make the nanoparticles effective ...

Recommended for you

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.