More emphasis needed on recycling and reuse of Li-ion batteries

May 22, 2013
More emphasis needed on recycling and reuse of Li-ion batteries
The discovery of potential environmental and human health effects from disposal of millions of rechargeable lithium-ion batteries each year has led scientists to recommend stronger government policies to encourage the recovery, recycling and reuse of these batteries. Credit: Hemera/Thinkstock

The discovery of potential environmental and human health effects from disposal of millions of rechargeable lithium-ion batteries each year has led scientists to recommend stronger government policies to encourage recovery, recycling and reuse of lithium-ion (Li-ion) battery materials. That's the conclusion of a new paper in the ACS journal Environmental Science & Technology.

Oladele A. Ogunseitan and colleagues point out that Li-ion batteries have become mainstays for powering everything from smart phones to components in new jetliners, with global sales approaching $8 billion annually. They realized that the short life span (2-4 years) of Li-ion batteries in portable electronic devices would make a huge contribution to the electronic waste problem, which already is the fastest growing form of solid waste. So they decided to see whether potentially toxic materials leach out and become a health and environmental threat after disposal.

More emphasis needed on recycling and reuse of Li-ion batteries

Using standardized leaching tests, hazard assessment models and other methods for evaluating hazardous waste, the scientists showed that Li-ion batteries from cell phones would meet federal government definitions of hazardous waste because of lead content. California standards would classify them as hazardous due to cobalt, copper and nickel content. "These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, , and reuse of lithium battery materials," their report states.

Explore further: Researchers observe swelling of single-particle of silicon electrode for lithium ion batteries during charging reaction

More information: Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste, Environ. Sci. Technol., 2013, 47 (10), pp 5495–5503. DOI: 10.1021/es400614y

Abstract
Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and reuse of lithium battery materials.

add to favorites email to friend print save as pdf

Related Stories

Komaba Group reports sodium ion battery progress

Sep 28, 2012

(Phys.org)—Scientists with a common goal, to figure out an alternative to the lithium ion battery, the main power source of choice, are not giving up. The quarrel is not with the lithium ion battery's performance ...

US: Lithium batteries not necessarily unsafe

Feb 06, 2013

The use of lithium ion batteries to power aircraft systems isn't necessarily unsafe despite a battery fire in one Boeing 787 Dreamliner and smoke in another, but manufacturers need to build in reliable safeguards, ...

Recommended for you

Environmentally compatible organic solar cells

5 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Floating nuclear plants could ride out tsunamis

6 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

6 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...