Elucidating energy shifts in optical tweezers

May 8, 2013

A small piece of paper sticks to an electrically charged plastic ruler. The principle of this simple classroom physics experiment is applied at the microscopic scale by so-called optical tweezers to get the likes of polystyrene micro-beads and even living cells to "stick" to a laser beam, or to trap atoms at ultra-low temperatures. Physicist Fam Le Kien and his colleagues from the Institute of Atomic and Subatomic Physics of the Vienna University of Technology, Austria, provide a comprehensive manual with general theoretical tools, definitions, and spectroscopic data sets for calculating the energy levels of atoms, which are modified by light emanating from optical tweezers, in a study about to be published in European Physical Journal D.

One issue that occurs when trapping atoms with is that the laser beam modifies atoms' energy levels. As a result, it changes the frequency at which the atoms emit or absorb light and . Depending on the experiment, this effect can have important consequences and its magnitude might need to be calculated. Interestingly, the change in the energy levels can be seen as partly due to a fictitious magnetic field, induced by the light field effect on the atoms. This is akin to introducing fictitious forces when describing a body's motion in a rotating reference frame.

The authors show that these fictitious magnetic fields add up to the same effect as real magnetic fields. This will help physicists to intuitively foresee the effects that occur in their experiments when either cannot be avoided or are intentionally applied. Ultimately, this all-in-one guide could be used in fundamental research as well as for applications such as quantum simulators and quantum computers.

Explore further: Cross-Dressing Rubidium May Reveal Clues for Exotic Computing

More information: Fam Le Kien et al. (2013), Dynamical polarizability of atoms in arbitrary light fields: General theory and application to cesium, European Physical Journal D. DOI: 10.1140/epjd/e2013-30729-x

Related Stories

Cross-Dressing Rubidium May Reveal Clues for Exotic Computing

February 25, 2009

(PhysOrg.com) -- Neutral atoms--having no net electric charge--usually don't act very dramatically around a magnetic field. But by “dressing them up” with light, researchers at the Joint Quantum Institute, a collaborative ...

Trapping giant Rydberg atoms for faster quantum computers

May 6, 2010

In an achievement that could help enable fast quantum computers, University of Michigan physicists have built a better Rydberg atom trap. Rydberg atoms are highly excited, nearly-ionized giants that can be thousands of times ...

A magnetic approach to lattices

May 22, 2012

(Phys.org) -- JQI experimentalists under the direction of Ian Spielman are in the business of using lasers to create novel environments for neutral atoms. For instance, this research group previously enticed electrically ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.