EGF growth factor accelerates cell division, study finds

May 14, 2013

Biologists at Heidelberg University have discovered new approaches for the treatment of cancer. They investigated how a special signalling molecule, the epidermal growth factor (EGF), stimulates the separation of chromosomes in the cell. The researchers were able to demonstrate that EGF accelerates the division of the cell nucleus, i.e. mitosis, as well as boosts precision in chromosome segregation. "Because the regulation of the EGF pathway is radically altered in many types of cancers, the results of our research point to new approaches in cancer therapy", explains Prof. Dr. Elmar Schiebel from the Center for Molecular Biology of Heidelberg University (ZMBH). Together with scientists from the University of Leicester, the European Molecular Biology Laboratory and the German Cancer Research Center, Prof. Schiebel and his team have published their findings in the journal Developmental Cell.

"The duplication of cells is an extremely vital and highly regulated process that can lead to cancer if it goes awry", states Prof. Schiebel. During the mitosis phase of cell duplication, the genetic information is passed to the daughter cells by the spindle apparatus. The assembly of the begins with the dissolution of the filamentous connection between the . The centrosomes are responsible for the organisation of the spindle fibres, the microtubules. The microtubules, which control chromosome separation during mitosis, bind to the genetic material when mitosis begins and then slide the chromosomes toward the two spindle poles. The cell then splits into two daughter cells. "Our current study has shown that the centrosomes of cells stimulated by the growth factor EGF split apart earlier than in cells with less EGF stimulation. This makes mitosis in EGF stimulated cells quicker and more precise", says Prof. Schiebel.

The results of this research are particularly significant for certain agents that block the spindle fibres and thereby prevent chromosome division during mitosis. These agents act on cancer cells, which divide more often than healthy ones, by selectively killing them. Prof. Schiebel indicates that cytostatics such as taxol have considerable side effects. Researchers are therefore endeavouring to find other drug targets with a function in mitosis for treating cancer.

According to Prof. Schiebel, the Eg5 motor protein is a target candidate since it is vital for mitosis. Eg5 orchestrates the separation of the two spindle poles, which correctly divide the chromosomes between the . If synthetic substances such as monastrol or STLC inhibit Eg5, the cell cycle becomes arrested in mitosis. This causes programmed cell death; the "defective cells" are eliminated.

Prof. Schiebel's team has now discovered that cells stimulated by the EGF growth factor bypass the function of Eg5 during nuclear division and can proceed with mitosis without the motor protein Eg5. This means that substances like monastrol or STLC lose their effectiveness to kill cancer cells if they have high EGF regulation. "In terms of new approaches to cancer treatment, we see the need that not only the Eg5 protein is blocked, but the EGF pathway as well", explains Prof. Schiebel. "The efficacy of this new strategy in treating cancer patients must now be verified in clinical studies."

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: Mardin, B. et al. EGF-Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival, Developmental Cell 25, 229-240, May 13, 2013, doi: 10.1016/j.devcel.2013.03.012

add to favorites email to friend print save as pdf

Related Stories

New key mechanism in cell division discovered

May 18, 2012

Researchers from the Bellvitge Biomedical Research Institute (IDIBELL) have identified the mechanism by which protein Zds1 regulates a key function in mitosis, the process that occurs immediately before cell division. The ...

Scientists deconstruct cell division

Feb 08, 2009

The last step of the cell cycle is the brief but spectacularly dynamic and complicated mitosis phase, which leads to the duplication of one mother cell into two daughter cells. In mitosis, the chromosomes ...

Recommended for you

Cohesin molecule safeguards cell division

18 hours ago

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

19 hours ago

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

21 hours ago

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.