Reducing ecological footprint of OPV production

May 07, 2013

Solliance - a cross-border research initiative on thin film photovoltaics by ECN, Holst Centre, imec, TNO, TU Eindhoven and FZ Jülich - has achieved a world first with a new inkjet printing process for manufacturing environmentally friendly OPV cells that deliver benchmark efficiency. Completely compatible with existing manufacturing technology, the process replaces toxic chlorinated solvents with more benign alternatives. The result builds on a combined achievement of Solliance and French OPV manufacturer DisaSolar, and was also supported by the EU FP7 project X10D.

Organic photovoltaics (OPVs) promise cheaper that can be flexible, lightweight, semitransparent and easily integrated into construction materials. Until now, however, OPV production processes have relied on spin-coating techniques and chlorinated solvents. These solvents are highly toxic; their potential for contaminating the water in rivers and killing wildlife making them a banned substance for processes. OPVs have so far been limited to lab-scale production.

Under its goal to eliminate toxic substances from production, Solliance has developed a new OPV process that allows the photo-active layers to be inkjet printed without using poisonous chlorinates. The breakthrough was achieved in collaboration with French OPV manufacturer DisaSolar and within the framework of the European project X10D.

The 'magic' behind the process is a blend of low-toxicity solvents. They provide a stable base that achieves the right level of viscosity and of the inks, allowing OPVs to be printed. The resulting OPV cells deliver performances comparable to the spin-coated counterparts from standard chlorinated solvents, both achieving approximately 3% efficiency for a P3HT:PCBM photoactive layer system.

Next to being environmentally friendly Solliance's solution also benefits from being based on , making it more suited to scaling up to commercial production. The process uses industrial print-heads, so cells are created in a single pass making production very fast.

"By combining a more environmentally friendly process with large area inkjet printing capability, we have successfully bridged the gap between academia and industry," explains Tamara Eggenhuisen, research scientist in Solliance's Organic Photovoltaics program.

"Apart from the speed and ecological advantages, using ink jet printing allows cells of any shape to be printed. As a result, OPV cells and modules could be fully integrated into building materials and other applications, adding invisible solar generation functionality for perfect environmental aesthetics," adds Jan Gilot, senior research scientist in Solliance's Organic Photovoltaics program.

Explore further: ASML sees lull in orders from computer chip makers

add to favorites email to friend print save as pdf

Related Stories

European interregional collaboration on thin-film PV

Oct 08, 2012

Imec and its partners in the Solliance initiative announce that they have launched, together with the Institute of Materials Research of the University of Hasselt (IMO), the Solar Flare Interreg Project. Solar Flare is co-funded ...

Recommended for you

Technip, Heerema win third giant Angolan oil contract

10 minutes ago

The ultra-deep Angolan offshore oil project called Kaombo generated the third huge contract in three days on Wednesday when French group Total picked two firms to carry out underwater engineering worth $3.5 billion.

Bitcoin exchange MtGox placed in administration: CEO

39 minutes ago

Failed Bitcoin exchange MtGox was Wednesday placed in administration by a Japanese court, with an order for bankruptcy expected to be issued soon, its administrator and chief executive said.

Tech giants look to skies to spread Internet

3 hours ago

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

4 hours ago

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...